logical link control
- logical link control的基本解释
-
-
逻辑链路控制
- 相似词
- 更多 网络例句 与logical link control相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The main contributions of the second part of this dissertation are focused on the cryptographic properties of logical functions over finite field, with the help of the properties of trace functions, and that of p-polynomials, as well as the permutation theory over finite field: The new definition of Chrestenson linear spectrum is given and the relation between the new Chrestenson linear spectrum and the Chrestenson cyclic spectrum is presented, followed by the inverse formula of logical function over finite field; The distribution for linear structures of the logical functions over finite field is discussed and the complete construction of logical functions taking on all vectors as linear structures is suggested, which leads to the conception of the extended affine functions over finite field, whose cryptographic properties is similar to that of the affine functions over field GF (2) and prime field F〓; The relationship between the degeneration of logical functions and the linear structures, the degeneration of logical functions and the support of Chrestenson spectrum, as well as the relation between the nonlinearity and the linear structures are discussed; Using the relation of the logical functions over finite field and the vector logical functions over its prime field, we reveal the relationship between the perfect nonlinear functions over finite field and the vector generalized Bent functions over its prime field; The existence or not of the perfect nonlinear functions with any variables over any finite fields is offered, and some methods are proposed to construct the perfect nonlinear functions by using the balanced p-polynomials over finite field.
重新定义了有限域上逻辑函数的Chrestenson线性谱,考察了新定义的Chrestenson线性谱和原来的Chrestenson循环谱的关系,并利用一组对偶基给出了有限域上逻辑函数的反演公式;给出了有限域上随机变量联合分布的分解式,并利用随机变量联合分布的分解式对有限域上逻辑函数的密码性质进行了研究;给出了有限域上逻辑函数与相应素域上向量逻辑函数的关系,探讨了它们之间密码性质的联系,如平衡性,相关免疫性,扩散性,线性结构以及非线性度等;讨论了有限域上逻辑函数各类线性结构之间的关系,并给出了任意点都是线性结构的逻辑函数的全部构造,由此引出了有限域上的"泛仿射函数"的概念;考察了有限域上逻辑函数的退化性与线性结构的关系、退化性与Chrestenson谱支集的关系;给出了有限域逻辑函数非线性度的定义,利用有限域上逻辑函数的非线性度与相应素域上向量逻辑函数非线性度的关系,考察了有限域上逻辑函数的非线性度与线性结构的关系;利用有限域上逻辑函数与相应素域上向量逻辑函数的关系,揭示了有限域上的广义Bent函数与相应素域上的广义Bent函数的关系,以及有限域上的完全非线性函数与相应素域上向量广义Bent函数之间的关系;给出了任意有限域上任意n元完全非线性函数存在性与否的完整证明,并利用有限域上平衡的p-多项式的性质给出了有限域上完全非线性函数的一些基本构造方法。
-
PART 1 UNIT 1 B Electrical and Electronic Engineering Basics A Electrical Networks ———————————— 3 Three-phase Circuits A The Operational Amplifier ——————————— 5 UNIT 2 B Transistors A Logical Variables and Flip-flop —————————— 8 UNIT 3 B Binary Number System A Power Semiconductor Devices —————————— 11 UNIT 4 B Power Electronic Converters A Types of DC Motors —————————————15 UNIT 5 B Closed-loop Control of DC Drivers A AC Machines ———————————————19 UNIT 6 B Induction Motor Drive A Electric Power System ————————————22 UNIT 7 B PART 2 UNIT 1 B Power System Automation Control Theory A The World of Control ————————————27 —————29 The Transfer Function and the Laplace Transformation UNIT 2 B A Stability and the Time Response ————————— 30 Steady State————————————————— 31 A The Root Locus ————————————— 32 ————— 33 UNIT 3 B The Frequency Response Methods: Nyquist Diagrams UNIT 4 A The Frequency Response Methods: Bode Piots ————— 34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory B State Equations 40 38 UNIT 6 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network Computer Control Technology A Computer Structure and Function 42 B Fundamentals of Computer and Networks 43 44 PART 3 UNIT 1 UNIT 2 A Interfaces to External Signals and Devices B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control UNIT 4 A Fundamentals of Single-chip Microcomputer 49 B Understanding DSP and Its Uses 1 UNIT 5 A A First Look at Embedded Systems B Embedded Systems Design Process Control A A Process Control System B 50 PART 4 UNIT 1 Fundamentals of Process Control 52 53 UNIT 2 A Sensors and Transmitters B Final Control Elements and Controllers UNIT 3 A P Controllers and PI Controllers B PID Controllers and Other Controllers UNIT 4 A Indicating Instruments B Control Panels Control Based on Network and Information A Automation Networking Application Areas B Evolution of Control System Architecture PART 5 UNIT 1 UNIT 2 A Fundamental Issues in Networked Control Systems B Stability of NCSs with Network-induced Delay UNIT 3 A Fundamentals of the Database System B Virtual Manufacturing—A Growing Trend in Automation UNIT 4 A Concepts of Computer Integrated Manufacturing B Enterprise Resources Planning and Beyond Synthetic Applications of Automatic Technology A Recent Advances and Future Trends in Electrical Machine Drivers B System Evolution in Intelligent Buildings PART 6 UNIT 1 UNIT 2 A Industrial Robot B A General Introduction to Pattern Recognition UNIT 3 A Renewable Energy B Electric Vehicles UNIT 1 A
电路 2 电路或电网络由以某种方式连接的电阻器,电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R =电阻,欧姆。纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt =电流变化率,安培/秒; L =感应系数,享利。电容两端建立的电压正比于电容两极板上积累的电荷 q 。因为电荷的积累可表示为电荷增量 dq 的和或积分,因此得到的等式为 u=,式中电容量 C 是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为 i = dq/dt。因此电荷增量 dq 等于电流乘以相应的时间增量,或 dq = i dt,那么等式(1-1A-3)可写为式中 C =电容量,法拉。
-
PART 1 Electrical and Electronic Engineering Basics UNIT 1 A Electrical Networks B Three-phase Circuits UNIT 2 A The Operational Amplifier ——————————— 5 B Transistors UNIT 3 A Logical Variables and Flip-flop —————————— 8 ———————————— 3 B Binary Number System UNIT 4 A Power Semiconductor Devices —————————— 11 B Power Electronic Converters UNIT 5 A Types of DC Motors —————————————15 B Closed-loop Control of DC Drivers UNIT 6 A AC Machines ———————————————19 B Induction Motor Drive UNIT 7 A Electric Power System ————————————22 B Power System Automation PART 2 Control Theory UNIT 1 A The World of Control ————————————27 B The Transfer Function and the Laplace Transformation UNIT 2 A B —————29 Stability and the Time Response ————————— 30 ————————————— 32 Steady State————————————————— 31 UNIT 3 A The Root Locus B The Frequency Response Methods: Nyquist Diagrams ————— 33 UNIT 4 A The Frequency Response Methods: Bode Piots ————— 34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory B UNIT 6 State Equations 40 38 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network PART 3 UNIT 1 Computer Control Technology A Computer Structure and Function B 42 43 44 Fundamentals of Computer and Networks UNIT 2 A Interfaces to External Signals and Devices B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control 1 UNIT 4 A Fundamentals of Single-chip Microcomputer B Understanding DSP and Its Uses 49 UNIT 5 A A First Look at Embedded Systems B Embedded Systems Design PART 4 UNIT 1 Process Control A A Process Control System 50 B Fundamentals of Process Control 53 52 UNIT 2 A Sensors and Transmitters B Final Control Elements and Controllers UNIT 3 A P Controllers and PI Controllers B PID Controllers and Other Controllers UNIT 4 A Indicating Instruments B Control Panels PART 5 UNIT 1 Control Based on Network and Information A Automation Networking Application Areas B Evolution of Control System Architecture UNIT 2 A Fundamental Issues in Networked Control Systems B Stability of NCSs with Network-induced Delay UNIT 3 A Fundamentals of the Database System B Virtual Manufacturing—A Growing Trend in Automation UNIT 4 A Concepts of Computer Integrated Manufacturing B Enterprise Resources Planning and Beyond PART 6 UNIT 1 Synthetic Applications of Automatic Technology A Recent Advances and Future Trends in Electrical Machine Drivers B System Evolution in Intelligent Buildings UNIT 2 A Industrial Robot B A General Introduction to Pattern Recognition UNIT 3 A Renewable Energy B Electric Vehicles 2 UNIT 1 A
电路 电路或电网络由以某种方式连接的电阻器,电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R =电阻,欧姆。纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt =电流变化率,安培/秒; L =感应系数,享利。电容两端建立的电压正比于电容两极板上积累的电荷 q 。因为电荷的积累可表示为电荷增量 dq 的和或积分,因此得到的等式为 u=,式中电容量 C 是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为 i = dq/dt。因此电荷增量 dq 等于电流乘以相应的时间增量,或 dq = i dt,那么等式(1-1A-3)可写为式中 C =电容量,法拉。
- 更多网络解释 与logical link control相关的网络解释 [注:此内容来源于网络,仅供参考]
-
link farms:链接(LINK)工厂
link farms 链接(LINK)工厂: | Bulk Link Exchange Programs大宗链接(LINK)交换程序: | Cross Link 交叉链接(LINK):
-
logical circuit:逻辑电
logical channel control block | 逻辑通道控制块 | logical choice | 逻辑选择 | logical circuit | 逻辑电
-
High-level Data Link Control (HDLC):高 级 数 据 链 路 控 制
High-level Data Link Control (HDLC) 高阶数据链结控制 | high-level data link control [HDLC] 高 级 数 据 链 路 控 制 | High-Level Data Link Control, HDLC 高阶数据链结控制