英语人>词典>英汉 : linear interpolation的中文,翻译,解释,例句,拼写相似词汇
linear interpolation的中文,翻译,解释,例句,拼写相似词汇

linear interpolation

linear interpolation的基本解释
-

线性内插法

-

线性内插

相似词
更多 网络例句 与linear interpolation相关的网络例句 [注:此内容来源于网络,仅供参考]

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

Furthermore,we present the method for designing quadratic Bezier developable surface:give four corner points of developable surface and two free designing parameters,the other two control vertexes are on the line connecting the linear interpolation point between the first two control vertexes and the linear interpolation point between the last two control vertexes,and they are the linear interpolation points between these two linear interpolation points respectively,namely,these four linear interpolation points are colinear.

提出了二次Bézier可展曲面的设计方法:给定可展曲面的4个角点a0、b0、a2、b2和两个自由设计参数?姿、?滋,则待求的2个控制顶点a1、b1是在前2个控制顶点a0、b0的线性插值点a*与后2个控制顶点a2、b2的线性插值点b*的连线上,并且也是a*、b*这2个线性插值点的线性插值,即这4点a*、a1、b1、b*共线。

更多网络解释 与linear interpolation相关的网络解释 [注:此内容来源于网络,仅供参考]

Linear Interpolation:线性插值

用户完成所有数据输入后即可计算,如为插值计算,则弹出下拉式菜单,选择用线性插值(Linear Interpolation)或样条插值(Spline Interptlation)两种方法进行插值计算.

Linear Interpolation:线性内插法

较能清楚地解释等值轮廓线如何产生,进而延伸至三维的等值面建构.下图为二维资料,每一个格点皆有自己的值,我们想从此二维资料中撷取出等值为5及等值为7的轮廓线,透过线性内插法(linear interpolation)即能求得,亦表示著轮廓线之上的每一个点,

Linear Interpolation:线性插补

使用线性插补 (Linear Interpolation) 时,动画会在区段的持续期间内以不变的速率进行. 例如,如果主要画面格区段在 5 秒的持续期间内从 0 转换成 10,则动画会在指定的时间产生下表所列的值. 曲线插补 (Splined Interpolation) 更为复杂.

Linear Interpolation:线性插值(法)

目前经常采用的一种简单的图像缝合技术就是线性插值法(Linear Interpolation). (4)全景图展示:得到360度的全景图像后,还要把该图像投影到所选择模型的内表面展示,并提供简单的浏览功能.

local linear interpolation:直尺卡样法

local lighting 局部照明 | local linear interpolation 直尺卡样法 | local load 局部载荷

加载更多网络解释 (8)