linear associative algebra
- linear associative algebra的基本解释
-
-
线性结合代数
- 更多网络例句与linear associative algebra相关的网络例句 [注:此内容来源于网络,仅供参考]
-
It is proved that every Lie derivation of nest algebra is the sum of an associative derivation and a general trace. Every Lie isomorphism between nest subalgebras of a factor von Neumann algebra is the sum of an isomorphism and a general trace or the sum of a negative anti-isomorphism and a general trace. Lie invariant subspace of linear mappings on Banach algebras is introduced, and linear maps from nest subalgebra of a factor von Neumann algebra into itself which satisfy the property that the space of derivations is their Lie invariant subspaces are characterized. Simultaneously, it is shown that such maps are Lie derivations modulo the set of scalar multiple of the identity.
得到Lie导子的特征表示,即套代数上的任何一个Lie导子都是内导子与广义迹之和;给出了Lie同构和同构及反同构之间的关系,即因子von Neumann代数中套子代数之间的任何一个Lie同构要么是同构与广义迹之和要么是负反同构与广义迹之和;引入了Banach代数上线性映射的Lie不变子空间,并给出von Neumann代数中套子代数上以导子空间为Lie不变子空间的线性映射的一个刻画,同时也表明在模去数乘恒等映射的意义下,以导子空间为Lie不变子空间的线性映射就是Lie导子。
-
C.R.Miers has shown that the Lie triple derivation on a vN algebra M with no central abelian summands has the form D +λ, where D is an associative derivation and A is a linear map of M into its center which annihilates brackets of operators.
Miers证明了无交换部分的vN代数M上的三元Lie导子具有D+λ形式,其中D是M上的结合导子,λ是从M到它的中心Z上的线性映射且零化M中的括积。
- 更多网络解释与linear associative algebra相关的网络解释 [注:此内容来源于网络,仅供参考]
-
linear associative algebra:线性结合代数
1870年,Peirce 还出版了>(Linear Associative Algebra);这是第一部美国产有水准的纯数学著作,它在1881年开始受到欧洲数学家的重视. Peirce 受到的是本土教育,学到的是法国的数学与物理,从事过应用数学的工作,着手过数学教育的改革,