legendre polynomial
- legendre polynomial的基本解释
-
-
[计] 勒记德多项式
- 相似词
- 更多 网络例句 与legendre polynomial相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Firstly, this paper describes the history and state of the research to the minimal polynomial and the characteristic polynomial and then gives the main methods and its computational complexities for computing the characteristic polynomial and of a constant matrix, the characteristic polynomial of a polynomial matrix and the minimal polynomial of a polynomial.
本文先叙述了对最小多项式和特征多项式的国内外的研究历史和现状,然后给出了已有的计算常数矩阵特征多项式、多项式矩阵的特征多项式和常数矩阵最小多项式的主要算法及其复杂性。
-
When to get the coefficients of polynomial directly,the ill-conditioned matrix may be produced and effect the precision of result.Using orthogonal polynomial can avoid this problem.This paper introduces 4 orthogonal polynomial.In our discussion,it is proposed to use Chebyshev polynomial and Legendre polynomial,they are easier to sa...
讨论4种常用正交多项式在拟合卫星轨道与时间函数时的适用性;通过计算实例说明利用切比雪夫多项式和勒让德多项式做数据拟合时具有很高的精度;分析得出评定多项式拟合数据精度的适用阶数,实际应用中可降低工作量,提高计算效率;最后讨论同一多项式阶数下不同历元数对拟合结果的影响。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
- 更多网络解释 与legendre polynomial相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Legendre polynomial:勒让德多项式
Legendre polynomial expansion 勒让德多项式展开 | Legendre polynomial 勒让德多项式 | Legendre theorem 勒让德定理
-
Legendre polynomial:勒壤得多项式
lemon chrome 柠檬黄 | Legendre polynomial 勒壤得多项式 | Legal reaction 勒格耳反应
-
Legendre polynomial:多项式
左乘法 left-handed multiplication | Legendre多项式 Legendre polynomial | Legendre变换 Legendre's transformation
-
Legendre polynomial:勒氏多项式
勒氏函数 Legendre function | 勒氏多项式 Legendre polynomial | 勒氏级数 Legendre series
-
associated legendre polynomial:连带的勒让德多项式
associated legendre function 相伴勒让德函数 | associated legendre polynomial 连带的勒让德多项式 | associated minimal surface 相伴极小曲面
- 加载更多网络解释 (6)