lebesgue measurable
- lebesgue measurable的基本解释
-
-
勒贝格可测的
- 更多网络例句与lebesgue measurable相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the second part, we give the definition of Loeb measure space ofσ- finite measure space, discuss its properties; Then the Loeb measure space of image measure has been constructed; Finally, the definition of Loeb counting measure is given, by which, a construction of Lebesgue measure has been given, and discuss some simple properties of Lebesgue measurable and integrable function.
在第二部分里,首先给出σ-有限测度空间的Loeb测度空间的定义,讨论该空间上的一些简单性质;接着讨论了像测度的Loeb测度的构造及其性质;随后定义了L(来源:A14BC论文网www.abclunwen.com)oeb计数测度,并用Loeb计数测度给出Lebesgue测度的一种构造形式,同时讨论了Lebesgue可测和可积函数的一些简单性质。
-
In this paper,the definition modes of Lebesgue integral of non-negative measurable functions are studied by the way of cutting defining and valued rids,approaching with simple function series.The four definitions of Lebesgue integral of non-negative measurable functions are given.Furthermore,their e- quivalence properties are proved by elementary knowledge.
文献〔1」利用非负可测函数在Ef镇司上积分的极限定义了f在有界可测集E上的L积分;文献[2」利用非负递增简单函数列积分的极限定义了非负可测函数的L积分;文献[3]给出了L积分的一种统一定义;文献〔4一6〕分别证明了测度
-
With four continuity of non-additive set function and the relation of four convergences of the measurable function sequence,four forms Lebesgue theorem about measurable closed-valued functions on monotone measure space are discussed,respectively.
在经典测度论中,Lebesgue定理刻画了实值可测函数序列几乎处处收敛和依测度收敛之间的关系。1984~1986年,王震源[9]先后提出了较弱的"自连续"、"零可加"、"伪自连续"、"伪零可加"等重要概念,讨论了模糊测度空间上单值可测函数序列各种收敛之间的关系,推广了经典测度论中著名的Lebesgue定理以及其他定理。
- 更多网络解释与lebesgue measurable相关的网络解释 [注:此内容来源于网络,仅供参考]
-
lebesgue measurable:勒贝格可测的
lebesgue integral 勒贝格积分 | lebesgue measurable 勒贝格可测的 | lebesgue measure 勒贝格测度
-
lebesgue measurable:勒贝格可测
勒贝格积分|Lebesgue integral | 勒贝格可测|Lebesgue measurable | 勒贝格可测函数|Lebesgue measurable function
-
Lebesgue measurable function:勒贝格可测函数
勒贝格可测|Lebesgue measurable | 勒贝格可测函数|Lebesgue measurable function | 勒雷-绍德尔不动点法|fixed point method of Leray and Schauder