英语人>词典>英汉 : kernel of an integral equation的中文,翻译,解释,例句
kernel of an integral equation的中文,翻译,解释,例句

kernel of an integral equation

kernel of an integral equation的基本解释
-

积分方程的核

相似词
更多 网络例句 与kernel of an integral equation相关的网络例句 [注:此内容来源于网络,仅供参考]

Then the boundary element integral equation of interior and exterior form is deduced in detail, also the form with corner coefficient. The significance for numerical calculation and principle of the singular integral is analyzed, and a non-isoparametric transformation method is presented to calculate weak singular integral and Cauchy integral, the method presented provides us a very simple way to computer the two kinds of singular integral of Helmholtz boundary integral equation, and it is easy to program in computer. After the difficulty of the calculation for multi-frequency of Helmholtz boundary element is explained, a method named SECHIEF (Series Expansion Combined Helmholtz Integral Equation Formulation), which is focused on the computational efficiency, is presented.

对结构声辐射的边界积分方程的内部形式与外部形式进行了详细的推导,给出了角点系数的计算方法与边界积分方程的形式,在此基础上,分析了奇异积分产生的原理及其对数值计算的重要性,提出了一种计算奇异积分的非等参(来源:Ae8a8BC论文网www.abclunwen.com)单元的变换方法,该方法给Helmholtz 声学边界积分方程中的弱奇异积分与Cauchy 奇异积分的计算以及编程提供了极大便利。

In this topic, the dynamic analysis methods for piezoelectric vibrator are studied systematically based on the theoretical model, FEM numerical experimentation and FEM governing equation for given compound-mode vibrator, and some valuable conclusions are obtained. The main work accomplished is summarized as follows: 1.Elaborate the main modeling methods for piezoelectric vibrator and the significance and necessity to study the dynamic characteristics of piezoelectric vibrator which emphasize the urgency of this paper. 2.Take the bending deformation induced by piezoelectric ceramic as example, the energy transfer mechanism of electric energy to mechanical energy are analyzed; the motion and force transfer mechanism are analyzed for the longitudinal-bending vibrator. 3.Based on mode assumption and Hamilton principle, the coupling model of piezoelectric vibrator of linear USM is built; moreover, the equivalent circuit model is obtained and a coupling equation represents the relation between electric parameters and mechanical parameters is derived which provides foundation to match the vibrator and driving circuit. 4.Combine the constitutive equation of piezoelectric ceramic with elastic-dynamical equation, geometric equation in force field and the Maxwell equation in electric field and the corresponding boundary condition equation, the FEM control equation for piezoelectric vibrator of USM to solve dynamic electro-mechanical coupling field is established by employing the principle of virtual displacement. The equation lays the foundation to study the non-linear constitutive equation of piezoelectric ceramic driven by high-power. 5.Define the dynamic indexes of characteristic of vibrator and carry out variable parameters simulation by calculating the model parameters and the electric characteristics of vibrator are simulated according to the equivalent circuit model. By numerical experimentation, the working mode of vibration of vibrator and the shock excitation results of the working frequency band which provides the mode frequency to realize bimodal are analyzed. Detailed calculation of the electro-mechanical coupling field parameters is made by programming the FEM control equation.

本课题从理论模型、有限元数值试验、有限元控制模型等方面以复合振动模式振子为例对超声电机压电振子的动力学特性及其分析方法进行了全面系统地研究,得出了许多有价值的结论,主要概括如下: 1、阐述了目前针对超声电机压电振子的主要建模方法,对压电振子动态特性的研究意义和必要性进行了论述,突出了本文研究内容的迫切性; 2、以压电陶瓷诱发弹性体发生弯曲变形为例,分析了压电陶瓷通过诱发应变来实现机电能量转换的机理;对基于纵弯模式的压电振子的运动及动力传递机理进行了分析; 3、基于模态假定,利用分析动力学的Hamilton原理,建立了面向直线超声电机压电振子的机电耦合动力学模型,并据此建立了压电振子的等效电路模型,导出了电参量与动力学特性参量的耦合方程,为压电振子与驱动电路的匹配提供了依据; 4、从压电陶瓷的本构方程出发,综合力场的弹性动力学方程、几何方程、电场的麦克斯韦方程以及相应的边界条件方程,采用虚位移原理,建立了压电振子动态问题机电耦合场求解的有限元控制方程,为研究其大功率驱动下的非线性本构模型奠定了基础; 5、界定压电振子的动力学特性指标,对压电振子的机电耦合动力学模型参数进行计算及变参数仿真;依据等效电路模型,对压电振子的电学特性进行了仿真分析;通过有限元数值实验,对压电振子工作模态附近的模态振型及工作频率附近的频段进行了激振效果分析,找出了实现模态简并的激振频率;利用有限元控制方程,通过编程计算,对压电振子的力电耦合场参数进行了详细计算,得出了一些有价值的结论。

By usingthe relation between the Bergman kernel and the Riemann mapping and Plemly for-mulae,the second boundary integral equation about the Bergman kernel is obtained,moreover,the integral kernel is a continuous,without any singularity,parametized Neu-mann kernel.We discuss the case of some symmetric property,and get correspondingresults.

主要利用Bergman核与Riemann映照之间的关系,推导出Bergman核满足带有参数化Neumann核的第二类边界积分方程,积分核是连续的没有任何奇性,并讨论了具有某种对称性质的情形。

更多网络解释 与kernel of an integral equation相关的网络解释 [注:此内容来源于网络,仅供参考]

kernel of an integral equation:积分方程的核

kernel function 核 | kernel of an integral equation 积分方程的核 | kernel of integral operator 积分算子核

kernel of an integral equation:积分方程核

积分方程|integral equation | 积分方程核|kernel of an integral equation | 积分几何[学]|integral geometry