joukowski function
- joukowski function的基本解释
-
-
儒可夫斯基函数
- 相似词
- 更多 网络例句 与joukowski function相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The numerical model of an airfoil can be given by Joukowski transformation and conformal mapping.
为给定翼型的数值模型,本文采用儒可夫斯基变换和保角转绘。
-
The Joukowski airfoil problem is the simplest application of conformal mapping to airfoil design.
joukowski问题是最简单的翼型形映射应用到机翼设计。
-
Though comparing Canny operator and center B spline dyadic wavelet, the following conclusion is proven in this dissertation: a Center B spline function has tight support and Canny operator hasn't. b Center B spline function asymptotic convergence to Gaussian function and the derivative of Center B spline function asymptotic convergence to Canny operator. c The derivative of fourth order center spline B function is more suitable as a optimal edge detector than Canny operator. d Center B spline function can balance the smoothing and approximation of original data, and the fourth center B spline function is the only optimal solution of two order smoothing problem. e The error between the valve of time-frequency uncertainty of the fourth center B spline function and the lower bound of time-frequency uncertainty does not exceed 0.143% of the lower bound. f The derivative of center spline B function can construct a stability dyadic wavelet and can give a fast algorithm for multiscale edge detection, but Canny operator can do neither.
作者给出了Canny算子与中心B样条二进小波严格的比较证明,得出如下结论:a中心B样条函数具有紧支集,Canny算子不具有紧支集。b中心B样条函数的极限收敛于高斯函数,中心B样条函数的导数收敛于Canny算子。c四阶中心B样条函数的导数比Canny算子更接近最佳边缘检测滤波器。d中心B样条函数比高斯函数更能兼顾对原函数平滑和逼近的折中要求,并且四阶中心B样条函数是二阶逼近问题的唯一最优解。e四阶中心B样条函数的时频测不准关系值与时频测不准关系下界的逼近误差不超过0.143%。f中心B样条函数的导数可以构成稳定的二进小波,存在快速的多尺度算法;而Canny算子不构成稳定的二进小波,无法给出快速的多尺度算法。
- 更多网络解释 与joukowski function相关的网络解释 [注:此内容来源于网络,仅供参考]
-
joukowski function:儒可夫斯基函数
jordan ring 约当环 | joukowski function 儒可夫斯基函数 | judgment 判断