invertible transformation
- invertible transformation的基本解释
-
-
可逆变换
- 相似词
- 更多 网络例句 与invertible transformation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Secondly, the invertible assignment problem are studied. At last, we explored the conditions on the invertible completion of part matrix Mx and obtained the characterizations of the relovent operator of invertible completion.
利用构造分块初等矩阵、算子广义逆、极分解、谱分解为工具,深入地研究了算子对的逆补Mxy、算子逆配置的一系列等价刻画及一般性结论、缺项算子矩阵存在逆补Mx的等价刻画,并获得了逆补的预解集的性质刻画。
-
The inverse polynomial and the invertible affine transformation exist by the finite field, linear algebra and matrix theory. The invertible affine transformation and the inversion in are easily realized by using lookup table. An algorithm can be used to get the inverse element of modulo .
本文运用有限域、线性代数和矩阵理论,论证了逆多项式和逆仿射的存在性,并且应用查表法简捷地实现了中元素的求逆和逆仿射变换;设计了一个易于在在计算机上实现的算法,来求形如的多项式模时的逆元,该多项式的系数在上。
-
Only with such characteristics, the movement equations can be expressed as matrices, and the idea of transforming the movement equations to the simplest form through a nonlinear transformation can be realized;(2) The form of Zi =Yi + YTH2i Y + Y7H3i Y(2)+ Y(2)T H4i Y(2)+ YTH5i Y(3) is adhibited in the nonlinear transformation, so that the multivalued problem caused by the nonlinear transformation is avoided, and the higher order transformation can be taken next;(3) The fourth order nonlinear transformation matrices H21,H31,H41 and H51 are derived, by which the original movement equations of electric power system is transformed to Jodan form in Z space;(4) By use of the fourth order nonlinear transformation, the approximate expression of the stability boundary is obtained, in Z space it is Z1= 0,in Y space it is Y1 + YTH21 Y + YTH31 Y(2)-i- Y(2) TH41 Y(2)+YTH51 Y(3)= 0;(5) The criterion used in this paper to judge whether the system critical unstable is simple and quick;(6) The method used in this paper is a direct method, and no need to construct an energy function.
正是由 于电力系统的运动方程具有这样的特性,才能写成矩阵的形式,通过非线性变换将电力系统的运动方程变换为最简单的线性形式的思想才能得以实现;(2)将通常运用于电力系统暂态稳定性分析的Normal Form变换的形式由 Yi= Zi+ ZTh2riZ变形为 Zi= Yi+YTH2iY+YTH3iY(2)+Y(2)TH4iY(2)+YTH5iY(3),从而使得在对持续故障轨线实施同样的非线性变换以确定临界切除时间时,避免了非线性变换带来的多值性的问题,而只有在没有多值性问题的困扰下,才能采用较高阶的变换:(3)推导出了将原始电力系统系统的运动方程变换到Z空间的约当形式的非线性变换矩阵H21、H31、H41、HS1:(4)在运用四阶了「线性变换的情况下,给出了受扰动后系统的稳定边界的近似的解析表达,在Z空间为Z1=0,在y空间为: Y1+YTH21Y+YTH31Y(2)+Y(2)TH41Y(2)+YTH51Y(3)=0 (5)确定临界失稳的判据简单、快捷:对于一个复杂的电力系统,其稳定边界是相当复杂的一个高维曲面,即便是已知系统稳定边界的解析表达,要求出系统持续故障轨线何时与这一高维曲面相交,在数学上几乎是不可能实现的。
- 更多网络解释 与invertible transformation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
invertible transformation:可逆变换
invertible sheaf 可逆层 | invertible transformation 可逆变换 | involute 渐伸线