interpolation of operators
- interpolation of operators的基本解释
-
-
算子插值
- 更多网络例句与interpolation of operators相关的网络例句 [注:此内容来源于网络,仅供参考]
-
As to how to avoid weaknesses of these two operators, scholars have made unremitting efforts. One of the most famous is the French mathematician Sablonniere P, who introduced and studied a kind of new quasi-Bernstein interpolation operators in 1992. This kind of operators have given dual attention to the Lagrange operator and the Bernstein operator merit, and have avoided the twos deficiency.
对于这两种算子如何扬长避短,学者们做了不懈努力,其中最为著名的是法国数学家Sablonniere P,他于1992年引入并研究了一种新的拟Bernstein插值算子B上标(k 下标 n,,这是一类介于Lagrange算子与Bernstein算子之间的拟插值算子,这类算子兼顾了Lagrange算子与Bernstein算子的优点,克服了二者的不足。
-
Therefore,we know that under the mean of statistics, interpolation operators are not only ideal algorithm for realizing optimal approximation polynomials computation,but also ideal computing tool for realizing optimal information- based operation,and the property of their recover functions are good.
这说明了在统计学意义下,插值多项式算子一方面是实现最佳逼近多项式计算的理想算法,另一方面(来源:ABCdd论文网www.abclunwen.com)是实现最优信息基算法的理想计算工具,且具有性质优良的恢复函数。来源:AB03c303C论文网www.abclunwen.com
-
The main content includes that the accuracy of interpolation operators is creased since defect equations introduce less error: Gauss-Seidel solution can save effectively the computational time, in particular, the CPU-time for the setup phase; Jacobi-relaxation interpolation contributes to efficient and robust algebraic multigrid methods by a simple and purely algebraic mean.
最主要的内容是基于亏量方程引入的误差较小,从而进一步提高插值算子的精度;采用Gauss-Seidel解法有利于节省计算时间,特别是预备阶段的CPU时间;插值的松驰以一种简单的纯代数的方式获得高效且稳健的代数多重网格算法。
- 更多网络解释与interpolation of operators相关的网络解释 [注:此内容来源于网络,仅供参考]
-
interpolation of operators:算子插值
插值公式 interpolation formula | 算子插值 interpolation of operators | 插值问题 interpolation problem