interpolation [in,tə:pəu'leiʃən]
- interpolation的基本解释
-
n.
添写, 插补, 篡改, 窜改, 插入
- 相似词
- 拼写相近单词
- interpolations
- 更多 网络例句 与interpolation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
Furthermore,we present the method for designing quadratic Bezier developable surface:give four corner points of developable surface and two free designing parameters,the other two control vertexes are on the line connecting the linear interpolation point between the first two control vertexes and the linear interpolation point between the last two control vertexes,and they are the linear interpolation points between these two linear interpolation points respectively,namely,these four linear interpolation points are colinear.
提出了二次Bézier可展曲面的设计方法:给定可展曲面的4个角点a0、b0、a2、b2和两个自由设计参数?姿、?滋,则待求的2个控制顶点a1、b1是在前2个控制顶点a0、b0的线性插值点a*与后2个控制顶点a2、b2的线性插值点b*的连线上,并且也是a*、b*这2个线性插值点的线性插值,即这4点a*、a1、b1、b*共线。
- 更多网络解释 与interpolation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Interpolation:内插法
在本文中,转成扫描画面(rasterization)的定义仅仅是寻找图元(primitives)的涵盖范围,内插法(interpolation)指的是寻找图元(primitives)中被涵盖样品位置的参数值.
-
Interpolation:内插
事实上,这里的变频和低通滤波 ...其中的变频功能由图1中所示的正交混频器完成,抽取和滤波功能则由图1中所示的CIC抽取滤波器、HB抽取滤波器、255阶FIR抽取滤波器、重采样和HB内插(Interpolation)滤波器级联完成.
-
Interpolation:插值法
森普生最为人熟悉的贡献是他在插值法(Interpolation)及数值积分法(Numerical Method of Integration)方面,事实上他在概率方面也有一定的工作,他在1740年推出了他的「机会的特性和法则」(The Nature and Laws of Chance),
-
Interpolation:插值
插值 插值(interpolation),有时也称为"重置样本",是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩.
-
Linear Interpolation:线性插值
用户完成所有数据输入后即可计算,如为插值计算,则弹出下拉式菜单,选择用线性插值(Linear Interpolation)或样条插值(Spline Interptlation)两种方法进行插值计算.
- 加载更多网络解释 (13)