incompressible fluid
- incompressible fluid的基本解释
-
-
[化] 不可压缩流体
- 相似词
- 更多 网络例句 与incompressible fluid相关的网络例句 [注:此内容来源于网络,仅供参考]
-
There are series of papers studying the solvability of an incompressible, viscous, instationary fluid contained in a domian bounded entirely by a free surface. In 1977, Solonnikov proved its local solvability in a Holder space for any initial date but without surface tension. In 1984, he considered the same problem in a Sobolev space with surface tension being taken into account. In I992, Mogilevskii and Solonnikov treated the same problem in a Holder space, where the coefficient of surface tension is not a constant. There are also short-time existence results for the solvability of an incompressible, vicous, unsteady fluid bounded above by a free surface and below by a fixed bottom which approach horizontal planes at infinity. In 1981, Beale proved its local solvability in a Sobolev space for any initial date but without surface tension. In 1983, Allain were concerned with the same problem in R〓 with surface tension but under the assumption that the initial fluid domain was near a horizontal strip. In 1987, he obtained the same result without the preceding assumption. In 1996, Tani solved the same problem in R with surface tension. For the solvability of an incompressible viscous instationary fluid in Ω R bounded inside by a free surface S and outside by a rotating boundary S, in 1995 Ciuperca proved its local existence in a Sobolev space for any initial date but without surface tension. In this paper, we consider the same problem with surface tension.
对于边界完全是由自由边界组成的有界区域中粘性不可压流体的非定常运动问题,Solonnikcv于1977年在忽略表面张力情况下证明了初值问题小时间解在Holder空间的存在性,于1984年在有表面张力情况下证明了初值问题问题小时间解在Sobolev空间的存在性,Mogilevskii和Solonnikov于1992年在表面张力系数可以不是常数情况下证明了初值问题小时间解在Holder空间的存在性;对于上面是自由边界、下面是固定边界且两边界在无限处趋于水平的无限区域中粘性不可压流体的非定常运动问题,Beale于1981年在忽略表面张力情况下证明了初值问题小时间解在Sobolev空间的存在性,Allain于1983年在有表面张力情况下证明了R中初值问题小时间解在Sobolev空间的存在性,但其中假定初始区域近似是个水平条,他于1987年去掉了这个假定得到同样的结果,Tani于1996年在有表面张力情况下证明了R中初值问题小时间解在Sobolev空间的存在性;对于R中内面是自由边界、外面是旋转边界S的有界区域中粘性不可压流体的非定常运动问题,Ciuperca于1995年在忽略表面张力情况下证明了初值问题小时间解在Sobolev空间的存在性,本文考虑了在有表面张力情况下初值问题可解性问题。
-
The second part was to test the appearance, ingredient analysis, surface potential, thermal conduction properties, and magnetism of the nano composite fluid prepared from the parameters. The experiment found that unoxidized particles, Ag, Cu, Fe, and Ni appeared round. If combined with oxygen in water as oxides, the nano particles would grow toward certain directions. In copper/iron nano composite fluid, FeO appeared cubic, Cu2O appeared coniferous. In silver/iron nano composite fluid, FeO was polygonal. In dielectric potential detection, the nano composite fluid was likely to aggregate and deposit, except for silver/iron set. In other sets, the pH of silver/cobalt nano composite fluid was 7, surface potential was 21.21mV; the pH for silver/nickel nano composite fluid was 6.5, surface potential was 21.04mV; the pH for copper/iron nano composite fluid was 7, surface potential was -30mV. The fluid particles of the three sets could all maintain suspension of 2 weeks or more. For thermal conduction, the silver/nickel, nano composite fluid showed the best thermal conduction. Under temperature of 30℃ fluid weight conduction of 0.4%, the thermal conduction increase was 26%. For magnetic detection, except for silver/iron nano composite fluid, the nano particles of other three sets were paramagnetic, and all four sets were soft magnetic nano composite materials.
第二部分。将由较佳制备参数所产出的奈米复合流体,进行形貌外观、成分分析、表面电位及热传导性质实验与磁性检测;在奈米颗粒的形貌部分,经实验发现Ag、Cu、Fe、Ni等未氧化的颗粒皆呈现近似圆形,而若与水中的氧结合形成氧化物,奈米颗粒则会朝特定方向成长,在铜/铁奈米复合流体中FeO为四方体结构、Cu2O的颗粒是针叶状,在银/铁奈米复合流体中FeO则为多边形结构;而介面电位检测方面,结果显示经本制程所产出的奈米复合流体除银/铁奈米复合流体这一组较容易聚集沉淀外,其他三组中银/钴奈米复合流体的pH值为7,表面电位为21.21mV,银/镍奈米复合流体的pH值6.5表面电位为21.04mV而铜/铁奈米复合流体的pH值为7时表面电位约在-30mV,且此三组流体颗粒皆能维持悬浮性2周以上,悬浮性较佳;热传导实验部分,四组奈米复合流体中以银/镍奈米复合流体在增进热传上效果最佳,在温度30℃及流体重量浓度0.4﹪条件下热传导系数增进达26﹪;磁检测方面,除了银/铁奈米复合流体外,其他三组奈米颗粒皆属顺磁性,且这四组奈米复合材料都是属软磁性。
-
Rumjantsev used Hamilton's principle with Lagrange's multipliers to generate the dynamical equations of a rigid-fluid coupled system in 1954 and the dynamical equations and their dynamical boundary conditions of a fluid-elastic coupled system in 1969, where the fluid is incompressible and inviscid. In 1990, Liu used Jourdain's principle with Lagrange's multipliers to generate the dynamical equations of a rigidfluid coupled system, where the fluid is incompressible and viscid.
Rumjantsev利用带Lagrange乘子Hamilton变分原理于1954年建立了刚—流耦合系统的动力方程,于1969年建立了流—弹耦合系统的动力方程及其动力边界条件,其中所考虑的流体是不可压无粘液体;Liu利用带Lagrange乘子Jourdain变分原理于1990年建立了刚—流耦合系统的动力方程,其中所考虑的流体是不可压粘性液体。
- 更多网络解释 与incompressible fluid相关的网络解释 [注:此内容来源于网络,仅供参考]
-
incompressible fluid:非压缩性流体
714 、 非顽磁性铁磁材料 non-retentive ferromagnetic material | 715 、 非压缩性流体 incompressible fluid | 716 、 非稳态 unsteady state
-
incompressible fluid:不可压缩流体
不可通约量 incommensurable quantities | 不可压缩流体 incompressible fluid | 不相容性;不-致 inconsistency
-
incompressible fluid:不可压缩铃
incompressible flow 不可压缩流 | incompressible fluid 不可压缩铃 | inconel 因科镣合金
-
incompressible fluid:非压缩性铃
incompressible flow 不可压缩怜 | incompressible fluid 非压缩性铃 | inconel 因科镍合金
-
incompressible fluid flow:不可压缩流
不可压缩流动:incompressible flow | 不可压缩流:incompressible fluid flow | 粘性流动:viscous flow
- 加载更多网络解释 (4)