homological dimension
- homological dimension的基本解释
-
-
同调维数
- 更多网络例句与homological dimension相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Third,we give the definition of homological dimension of CT-injective modules.
在第一章中,我们给出了ann -自内射环的定义以及一些等价条件。
-
The structure of R with small homological dimension is discussed.
至于整体维数有限的左右Noether局部环是否是整环,至今尚未解决。
-
We will call the construction a crossed product. The results about the sufficient and necessary conditions for A#H, the smash product, to have finite global homological dimension have been discussed in ~WYZ. which will be extended to crossed prodcut A#a.
关于smash积有有限整体同调维数的充分必要条件这一结果在中已有了一定的讨论,本文主要是将关于smash积的这一结果推广到crossed积。
-
The injective rings play an important role in the study of rings and categories of modules . First , we introduce the notion of ann-injective rings and CT-injective modules .Second,we make an inquiry into a series of their properties.Third,we give the definition of homological dimension of CT-injective modules.At last,we give the definition of FGT rings which is the extension of cogenerator rings.
本文对环与模范畴中一重要的模类—内射模进行了延拓,引入了ann -自内射环以及CT -内射模的概念,探讨了它们一系列的性质,并定义了CT -内射模的同调维数,最后对余生成子环进行推广得到了FGT -环,讨论了它与CT -内射环的关系以及它的一些性质。
-
So in chapter 2, we use P-flat and P-injective modules to characterize some important rings, like SF-rings, Von Neumann regular rings and Coherent rings, etc. In chapter 3, we introduce the homological dimension of P-flat and P-injective modules.
众所周知,正是由于研究各类模以及它们的同调维数,人们才能对环得到更深层次的性质的描述,所以在第二章中,我们就利用了P-平坦模与P-内射模来刻划几种重要的环,如SF环、Von Neumann正则环、凝聚环等。
- 更多网络解释与homological dimension相关的网络解释 [注:此内容来源于网络,仅供参考]
-
homological dimension:同惮数
homological algebra 同碟数 | homological dimension 同惮数 | homological invariant 同祷变量
-
homological dimension:同调维数
homologenetic induction 同源诱导作用 | homological dimension 同调维数 | homological figures 同源图形