holonomic
- holonomic的基本解释
-
adj.
完整[完全]的
- 相关中文词汇
- 完整的
- 更多网络例句与holonomic相关的网络例句 [注:此内容来源于网络,仅供参考]
-
It is proved that the model of Hertz, Capon and Lindel"of areidentical to Vakonomic model while the model of H"older, Pars andChaplygin are identical to Chetaev's model. The fact thatVakonomic model and Chetaev's model exist simultanously can betraced back to the early days of non-holonomic mechanics. These twomodels cause two problems the d- and - permutable problems.
论证了Hertz, Capon和Lindel"of的工作与Vakonomic模型相吻合,而H"older, Pars和Chaplygin的工作与Chetaev模型相吻合,Vakonomic模型和Chetaev模型两类模型并存的局面可以追溯到非完整力学发展的初期。1mm说明了伴随两类模型并存的现象而出现的两个问题 d-交换性问题和-交换性问题。
-
The studyshows that Chetaev's model for mechanicalsystems with non-holonomic con-straints can be reduced to three essential factors:(1)a kind of direct sum ofjet bundles according to the constraints,(2)D′Alembert's principle,(3)pos-tulate of ideal constraints.The first among the three factors only has geomet-ric significance and the second is a fundamental physics principle independentof any constraints.
研究表明,非完整约束力学系统的Chetaev模型归结为三个要素:(1)射丛按约束的直和分解;(2)D′Alembert原理;(3)理想约束条件,其中(1)仅具有几何意义,(2)为与约束无关的基本物理原理,而(3)是对约束力学系统的限制条件。
-
The two kinds of symmetries in holonomic and non-holonom-ic mechanical systems,i.e.symmetries of differential equations of motion(ab-breviated as SDEM)and symmetries of Noether-type,and interrela-tions among all kinds of symmetries are investigated.The necessary and suffi-cient conditions of SNT to be SDEM are found out.It is pointed out thatSDEM have distinct geometric properties which are equivalent to the geodesiccharacteristic of differential equations of motion and geodesic deviation.
文中研究了完整与非完整力学系统的两类对称性,即运动微分方程的对称性和Noether型对称性,以及各种对称性之间的相互关系,确定了Noether型对称性为运动微分方程对称性的充分必要条件,并指出运动微分方程的对称性具有明确的几何性质,即它等价于运动微分方程的测地性质以及测地偏离性质。
- 更多网络解释与holonomic相关的网络解释 [注:此内容来源于网络,仅供参考]
-
holonomic condition:完全性条件
holomorphy 正则 | holonomic condition 完全性条件 | holonomic reference system 完整参考系
-
holonomic reference system:完整参考系
holonomic condition 完全性条件 | holonomic reference system 完整参考系 | holonomic system 完整系
-
holonomic system:完整系
holonomic reference system 完整参考系 | holonomic system 完整系 | holonomy 完整