generalized function
- generalized function的基本解释
-
-
广义函数
- 相似词
- 更多 网络例句 与generalized function相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The generalized force consists of the generalized conservative force, the generalized dissipation force and the generalized force in correspondence with the generalized coordinate except the generalized conservative force and the generalized dissipation force.
基于非自治有阻尼系统推导了第二类Lagrange方程,使用虚功原理,给出了广义力的求解方法,广义力由广义保守力、广义耗散力、除广义保守力和广义耗散力以外的对应于广义坐标的广义力这3部分组成。
-
For the Riemann boundary value problems for the first order elliptic systems , we translates them to equivalent singular integral equations and proves the existence of the solution to the discussed problems under some assumptions by means of generalized analytic function theory , singular integral equation theory , contract principle or generaliezed contract principle ; For the Riemann-Hilbert boundary value problems for the first order elliptic systems , we proves the problems solvable under some assumptions by means of generalized analytic function theory , Cauchy integral formula , function theoretic approaches and fixed point theorem ; the boundary element method for the Riemann-Hilbert boundary value problems for the generalized analytic function , we obtains the boundary integral equations by means of the generalized Cauchy integral formula of the generalized analytic function , introducing Cauchy principal value integration , dispersing the boundary of the area , and we obtains the solution to the problems using the boundary conditions .
对于一阶椭圆型方程组的Riemann边值问题,是通过把它们转化为与原问题等价的奇异积分方程,利用广义解析函数理论、奇异积分方程理论、压缩原理或广义压缩原理,证明在某些假设条件下所讨论问题的解的存在性;对于一阶椭圆型方程组的Riemann-Hilbert边值问题,利用广义解析函数理论、Cauchy积分公式、函数论方法和不动点原理,证明在某些假设条件下所讨论问题的可解性;广义解析函数的Riemann-Hilbert边值问题的边界元方法是利用广义解析函数的广义Cauchy积分公式,引入Cauchy主值积分,通过对区域边界的离散化,得到边界积分方程,再利用边界条件得到问题的解。
-
This paper generalizes the conclusion of Perfect nonlinear S-boxes by Nyberg(1991), and introduces the conception of inverse regular generalized vector Bent function. It shows that for inverse regular generalized vector Bent function f with even variables, m is no more than half of?. It also shows that when the input dimension n is odd, the regular generalized vector Bent function and the inverse regular generalized vector Bent function do not exist. This may prevent the cryptology designer from seeking the inexistent function.
摘要该文完善并拓展了Nyberg(1991)的关于广义向量Bent函数性质的结论,相应于Nyberg给出的正则广义向量Bent函数,提出了&负则的广义向量Bent函数&的概念:得到有偶数个输入的负则的广义向量Bent函数输出维数也不大于输入维数的一半;证明了奇数个输入的正则和负则的广义向量Bent函数都不存在,这些结果的给出,可使密码设计者避免一味去寻找某类不存在的函数。
- 更多网络解释 与generalized function相关的网络解释 [注:此内容来源于网络,仅供参考]
-
generalized function:广义函数
generalized Fourier analysis 广义傅里叶分析 | generalized function 广义函数 | generalized geologic map 综合地质图
-
generalized function:综合函数
"generalized Fourier analysis ","广义傅立叶分析" | "generalized function ","综合函数" | "generalized impedance ","广义阻抗"
-
even generalized function:偶广义函数
even function 偶函数,余弦函数是偶函数 | even generalized function 偶广义函数 | even half-spin representation 偶半旋表示
-
space of generalized function:广义函数空间
广义函数卷积|convolution of distributions | 广义函数空间|space of generalized function | 广义函数支集|support of distribution
-
convolution of generalized function:广义函数的卷积
convolution of functions | 函数的卷积 | convolution of generalized function | 广义函数的卷积 | convolution of probability distribution | 概率分布褶积
- 加载更多网络解释 (2)