g-strophanthin
- g-strophanthin的基本解释
-
-
苦羊角拗甙, 苦毒毛旋花子甙
- 更多网络例句与g-strophanthin相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In leaves,the concentration of Cd and Cu been up to 168.6μg·g~(-1) and 30.1μg·g~(-1),while in roots, they have been to 610.9μg·g~(-1) and 384.6μg·g~(-1).In these concentration compages,the leaves could accumulate Cd at a high rate,Cd50mg·g~(-1) Cu50 mg·g~(-1),Cd80mg·g~(-1) Cu30 mg·g~(-1),Cd80mg·g~(-1) Cu50 mg·g~(-1).At the concentration of Cd50mg·g~(-1) Cu50 mg·g~(-1), Iris pseudacorus L. could accumulate Cd and Cu at a high rate:inleaves,Cd82.908μg·g~(-1), Cu30.722μg·g~(-1),in roots, Cd266.181μg·g~(-1), Cu395.83μg·g~(-1),and at this concentration the plant could grow well, the dry weight of leaves and roots of it were 64.3% and 81.1% of the concentration compage Cd0mg·g~(-1 Cu50 mg·g~(-1)s.
研究表明,①黄菖蒲对Cd、Cu均有较强的吸收积累能力,其中对Cd的吸收积累能力相对大于Cu:地上部Cd、Cu含量最高分别达168.6μg·g~(-1)和30.1μg·g~(-1),根部Cd、Cu含量最高分别达610.9μg·g~(-1)和384.6μg·g~(-1);黄菖蒲地上部分Cd积累量均随处理浓度的升高而增加,特别在处理Cd50mg·g~(-1) Cu50mg·g~(-1)组合胁迫下,黄菖蒲对Cd、Cu的积累量为:叶的Cd含量为82.908μg·g~(-1),Cu为30.722μg·g~(-1);根的Cd含量为266.181μg·g~(-1),Cu395.83μg·g~(-1),且生长良好,叶和根的干重分别为处理Cd0mg·g~(-1) Cu50 mg·g~(-1)的64.3%和81.1%。
-
The hydrogen production potential of rice straw is 76.1mL/g TS, 90.5mL/g VS; corn straw is 90.9mL/g TS, 95.4 mL/g VS; barley straw is 95.2 mL/g TS, 102.9 mL/g VS; wheat straw is 29.7 mL/g TS, 31.1 mL/g VS; horsebean straw is 67.9 mL/g TS, 76.4 mL/g VS; soybean straw is 31.0 mL/g TS, 32.6 mL/g VS; pig dung is 162.4 mL/g TS, 202.7 mL/g VS; cow dung is 40.5 mL/g TS, 51.4 mL/g VS; chicken dung is 42.0 mL/g TS, 63.6 mL/g VS; horse dung is 31.4 mL/g TS, 37.4 mL/g VS.
其中,稻草的产氢潜力为:76.1mL/g·TS,90.5mL/g·VS;玉米秆的产氢潜力为:90.9mL/g·TS,95.4mL/g·VS;大麦秆的产氢潜力为:95.2mL/g·TS,102.9mL/g·VS;小麦秆的产氢潜力为:29.7mL/g·TS,31.1mL/g·VS;蚕豆秆的产氢潜力为:67.9mL/g·TS,76.4mL/g·VS;黄豆秆的产氢潜力为:31.0mL/g·TS,32.6mL/g·VS;猪粪的产氢潜力为:162.4mL/g·TS,202.7mL/g·VS;牛粪的产氢潜力为:40.5mL/g·TS,51.4mL/g·VS;鸡粪的产氢潜力为:42.0 mL/g·TS,63.6 mL/g·VS;马粪的产氢潜力为:31.4mL/g·TS,37.4 mL/g·VS。
-
The effects and mechanism of GABAergic neurons, NOergic neurons, opioid peptide and cyclic adenosine monophosphate in the nucleus reticularis thalami on sleep-wakefulness cycle of rats and the effects and mechanism of the 5-HTergic nerve fibers project from the nucleus raphes dorsalis to RT on sleep-wakefulness cycle of rats were investigated with the methods of brain stereotaxic, nucleus spile, microinjection and polysomngraphy.1. The effects of GABAergic neurons in RT on sleep-wakefulness cycle of rats1.1 Microinjection of 3-mercaptopropionic acid (3-MP, a kind of glutamate decarboxylase inhibitor) into RT. On the day of microinjection, sleep only decreased a litter. On the second day, sleep marked decreased and wakefulness marked increased. On the third and fourth day, sleep and wakefulness stages resumed to normal.1.2 Microinjection of gamma-amino butyric acid (GABA 1.0μg) into RT enhanced sleep and reduced wakefulness compared with control; while microinjection of L-glutamate (L-Glu, 0.2μg) decreased sleep and increased wakefulness; microinjection of bicuculline (BIC, 1.0μg), a GABAA receptor antagonist, enhanced wakefulness and reduced sleep; microinjection of baclofen (BAC, 1.0μg), GABAB receptor agonist, had the same effects as GABA.2. The effects of NOergic neurons in RT on sleep-wakefulness cycle of rats2.1 Microinjection of L-arginine (L-Arg, 0.5μg) into RT decreased sleep compared with control, but there were on statistaical difference between L-Arg group and control; while microinjection of sodium nitroprusside (SNP, 0.2μg), a NO donor into RT, sleep marked decreased and wakefulness marked increased. Microinjection of nitric oxide synthase inhibitor, N-nitro-L-arginine (L-NNA, 2.0μg) into RT enhanced sleep and reduced wakefulness.2.2 After simultaneous microinjection of L-NNA (2.0μg) and SNP (0.2μg) into RT, SNP abolished the sleep-promoting effect of L-NNA compared with L-NNA group; after simultaneous microinjection of L-NNA (2.0μg) and L-Arg(0.5μg) into RT, we found that L-NNA could not blocked the wakefulness-promoting effect of L-Arg.3. The effects of opioid peptide in RT on sleep-wakefulness cycle of rats3.1 Microinjection of morphine sulfate (MOR, 1.0μg) into RT increased wakefulness and decreased sleep compared with control; while microinjection of naloxone hydrochloride (NAL, 1.0μg), the antagonist of opiate receptors, into RT, enhanced sleep and reduced wakefulness.3.2 After simultaneous microinjection of MOR (1.0μg) and NAL (1.0μg) into RT, the wakefulness-promoting effect of MOR and the sleep-promoting effect of NAL were not observed compared with control.4. The effects of cAMP in RT on sleep-wakefulness cycle of rats Microinjection of cAMP (1.0μg) into RT increased sleep and decreased wakefulness compared with control; microinjection of methylene blue (MB,1.0μg) into RT enhanced sleep and reduced wakefulness compared with control.5. The effects of the 5-HTergic nerve fibers project from DRN to RT on sleep-wakefulness cycle of rats5.1 When L-Glu (0.2μg) was microinjected into DRN and normal sodium (NS,1.0μg) was microinjected into bilateral RT. We found that sleep was decreased and wakefulness was increased compared with control; when L-Glu (0.2μg) was microinjected into DRN and methysergide (MS,1.0μg), a non-selective 5-HT antagonist, was microinjected into bilateral RT, We found that sleep was enhanced and wakefulness was reduced compared with L-Glu group.5.2 When p-chlorophenylalanine (PCPA, 10μg) was microinjected into DRN and NS (1.0μg) was microinjected into bilateral RT, We found that sleep was increased and wakefulness was decreased compared with control; microinjection of 5-hydroxytryptaphan (5-HTP, 1.0μg), which can convert to 5-HT by the enzyme tryptophane hydroxylase and enhance 5-HT into bilateral RT, could block the effect of microinjection of PCPA into DRN on sleep-wakefulness cycle.
本研究采用脑立体定位、核团插管、微量注射、多导睡眠描记等方法,研究丘脑网状核(nucleus reticularis thalami,RT)中γ-氨基丁酸(gamma-amino butyric acid ,GABA)能神经元、一氧化氮(nitrogen monoxidum,NO)能神经元、阿片肽类神经递质、环一磷酸腺苷(cyclic adenosine monophosphate,cAMP)及中缝背核(nucleus raphes dorsalis,DRN)至RT的5-羟色胺(5-hydroxytryptamine,5-HT)能神经纤维投射对大鼠睡眠-觉醒周期的影响及其作用机制。1 RT内GABA能神经元对大鼠睡眠-觉醒周期的影响1.1大鼠RT内微量注射GABA合成关键酶抑制剂3-巯基丙酸(3-MP,5μg),注射当天睡眠时间略有减少,第二日睡眠时间显著减少,觉醒时间明显增多,第三、四日睡眠和觉醒时间逐渐恢复至正常。1.2大鼠RT内微量注射GABA受体激动剂GABA( 1.0μg)后,与生理盐水组比较,睡眠时间增加,觉醒时间减少;而RT内微量注射L-谷氨酸(glutamic acid, L-Glu, 0.2μg)后,睡眠时间减少,觉醒时间增加;RT内微量注射GABAA受体阻断剂荷包牡丹碱(bicuculline,BIC,1.0μg)后,睡眠时间减少,觉醒时间增加;RT内微量注射GABAB受体激动剂氯苯氨丁酸(baclofen,BAC,1.0μg)后,产生了与GABA相似的促睡眠效果。2 RT内NO能神经元对大鼠睡眠-觉醒周期的影响2.1大鼠RT内微量注射NO的前体L-精氨酸(L-Arg,0.5μg)后,与生理盐水组对比,睡眠时间略有减少,但无显著性意义;而RT内微量注射NO的供体硝普钠(Sodium Nitroprusside,SNP,0.2μg)后可明显增加觉醒时间,缩短睡眠时间;微量注射一氧化氮合酶抑制剂L-硝基精氨酸(L-arginine,L-NNA,2.0μg)后,引起睡眠时间增多,觉醒时间减少。2.2大鼠RT内同时微量注射L-NNA(2.0μg)和SNP(0.2μg)后与L-NNA组比较发现SNP逆转了L-NNA的促睡眠作用;RT内同时微量注射L-NNA(2.0μg)和L-Arg(0.5μg)后,与L-NNA(2.0μg)组比较发现L-Arg可以增加觉醒而缩短睡眠,其促觉醒作用未能被NOS的抑制剂L-NNA所逆转。3 RT内阿片肽对大鼠睡眠-觉醒周期的影响3.1大鼠RT内微量注射硫酸吗啡(morphine sulfate,MOR,1.0μg)后与生理盐水组对比,睡眠时间减少而觉醒时间增加; RT内微量注射阿片肽受体拮抗剂盐酸纳洛酮(naloxone hydrochloride,NAL,1.0μg)后与生理盐水组比较,睡眠时间增加而觉醒时间减少。3.2大鼠RT内同时微量注射MOR(1.0μg)和NAL(1.0μg)后,与生理盐水组对比,原有的MOR促觉醒效果和NAL的促睡眠效果都没有表现。4 RT内环一磷酸腺苷信使对大鼠睡眠-觉醒周期的影响大鼠RT内微量注射cAMP(1.0μg)后与NS(1.0μg)组比较,睡眠时间增多而觉醒时间减少;RT内微量注射亚甲蓝(methylene blue,MB,1.0μg)后,与NS组比较,睡眠时间增多而觉醒时间减少。5中缝背核投射到丘脑网状核的5-羟色胺能神经纤维对大鼠睡眠-觉醒周期的影响5.1大鼠DRN内微量注射L-Glu(0.2μg),同时在双侧RT内微量注射NS (1.0μg)后,与对照组(DRN和双侧RT注射NS, 0.2μg)比较,睡眠时间减少,觉醒时间增多;大鼠DRN内微量注射L-Glu(0.2μg),同时在双侧RT内微量注射二甲基麦角新碱(methysergide, MS, 1.0μg )后,与对照组(DRN注射L-Glu 0.2μg,双侧RT注射NS 1.0μg)比较,睡眠时间增多,觉醒时间减少。5.2大鼠DRN内微量注射对氯苯丙氨酸(p-chlorophenylalanine,PCPA,10μg),同时在双侧RT内微量注射NS (1.0μg)后,与对照组(DRN和双侧RT注射NS, 1.0μg)比较,睡眠时间增多,觉醒时间减少;大鼠DRN内微量注射PCPA(10μg),产生睡眠增多效应后,在双侧RT内微量注射5-羟色胺酸(5-hydroxytryptaphan , 5-HTP, 1.0μg )后,与对照组(DRN注射PCPA 10μg,双侧RT注射NS 1.0μg)比较,睡眠时间减少,觉醒时间增多。
- 更多网络解释与g-strophanthin相关的网络解释 [注:此内容来源于网络,仅供参考]
-
g-factor, Lande:兰德g因数
G因數 G-factor | 蘭德g因數 g-factor, Lande | 偽脈衝 ghost pulse
-
创世纪传说 G.U. VOL.1 再生(日版):Dot Hack G U Vol 1 Rebirth
Dot Hack Fragment 创世纪传说 断片 (日版) | Dot Hack G U Vol 1 Rebirth 创世纪传说 G.U. VOL.1 再生(日版) | Dot Hack G U Vol 2 Kimi Omou Koe hack GU Vol.2 忆君之声 (日版)
-
G-suit:抗G衣
抗高g动作 grunt maneuver | 抗G衣 g-suit | 耐G力 g-tolerance