estimator ['estimeitə]
- estimator的基本解释
-
n.
估计者
- 相似词
- 拼写相近单词
- estimators
- 更多 网络例句 与estimator相关的网络例句 [注:此内容来源于网络,仅供参考]
-
And then some ellipses that AUGR estimator is better than the OLS estimator and AUGL estimator is better than the OLS estimator are given, respectively.Second, the definition of the almost unbiased unified biased estimator is proposed. This definition includes the familiar almost unbiased estimators in literatures, and it is the unified expression of the familiar almost unbiased estimators. Followed the biased and variance are compared of AUUB estimator and the unified biased estimator, respectively. AUUB estimator has smaller bias than UB estimator and the variance of AUUB estimator is between the variance of UB estimator and 4 times of the variance of UB estimator. Finally the properties of AUUB estimator are discussed. The conclusion is gained that there are parameters made AUUB estimator is better than OLS estimator in terms of their mean square error. The sufficient and necessary condition that AUUB estimator is admissible is given. The ellipse is given that AUUB estimator is
然后给出了几乎无偏统一有偏估计的定义,该定义包括了文献中常见的几乎无偏估计,实现了常见几乎无偏估计的统一表达式;接下来我们比较了几乎无偏统一有偏估计与统一有偏估计的偏度与方差,得出了几乎无偏统一有偏估计比统一有偏估计有较小的偏度,几乎无偏统一有偏估计的方差介于统一有偏估计的方差与统一有偏估计的方差的四倍之间的结论;最后我们对统一有偏估计的主要性质作了讨论,证明了存在参数K,S使得几乎无偏统一有偏估计在均方误差意义下优于最小二乘估计的结论,给出了几乎无偏统一有偏估计为可容许估计的充要条件,还给出了在均方误差阵意义下几乎无偏统一有偏估计优于最小二乘估计的椭球。
-
We first state general linear model, ridge-type estimator and general ridge-type estimator, and the constraint biased estimator. And then, we introduce some basic theory about matrix and some conclusion about the admissibility of estimator in Gauss-Markov model. In the third chapter, we discussion several equivalent characterization of the best linear unbiased estimation, we proved that admissible characterization of admissible of linear estimation is as conditional general ridge-type estimation in general linear model. A necessary and sufficient condition that homogeneous linear estimator is admissible estimator is obtained.
本文首先概述了一般线性模型,岭估计及约束岭估计的发展历史和研究现状,在第二章介绍了矩阵的一些基本知识和可容许性的一些基本结论,第三章讨论了一般线性模型最佳线性无偏估计的几个等价条件,以及线性估计的可容许性特征,得到了一般线性模型的可容许线性估计均具有条件广义岭估计的形式,给出了一个齐次线性估计为可容许估计的充分必要条件。
-
Though the almost unbiased estimator was still a biased estimator, it has smaller bias than corresponding biased estimator.In this paper, we first study the properties of the almost unbiased generalized ridge estimator and the almost unbiased generalized Liu estimator.
但有偏估计毕竟偏离参数的真值,因此学者们又提出了几乎无偏估计的概念,虽然几乎无偏估计仍然是有偏估计,但是它比相应的有偏估计有更小的偏度。
- 更多网络解释 与estimator相关的网络解释 [注:此内容来源于网络,仅供参考]
-
estimator:估计量
就是当我们遇到一些无法或难以得出正确答案的问题时,我们可以先不要去迫切追求完美的解答,而是通过合理的数据统计来得出一个估计量(estimator). 蒙特卡罗方法(Monte Carlo Method)就是一个我即将要介绍的例子.
-
estimator:估計式
从样本中计算得来,用来估算一未知母数的统计量称为估计量值(estimates),用来计算估计值的计算公式称为估计式(estimator)平均值容易受到极端值(outlier)的影响,若资料中有过大或过小的观察值时,不要以平均值来代表集中趋势.
-
estimator:估计器
估计器(Estimator)和随机过程(Stochastic Process)简单样本(simple sample)是指这样的样本(X1,X2,...,Xn),它的分量Xi,i=1,...,n是独立同分布的随机变量(向量)估计器设(X1,X2,...,Xn)为一个样本,它的一个与总体分布无关的函数(或向量函数)f(X1,
-
estimator:估计值
但问题是并没有哪个假设或估计值(estimator)可以纠正所有的偏差. 因此,不同的方法可能会产生不同的结果,因而我们无从知晓正确的结论. 事实上,如果存在这些偏差的话,我们应期望不同的方法产生不同的结果. 因此,对于最终结论我犹豫不决.
-
Adaptive estimator:自适应估计量
Actual frequency, 实际频数 | Adaptive estimator, 自适应估计量 | Addition, 相加
- 加载更多网络解释 (12)