equation of jacobi
- equation of jacobi的基本解释
-
-
雅可比方程
- 相似词
- 更多 网络例句 与equation of jacobi相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Our results improve the former results. For periodic Jacobi matrix, some new spectral properties of periodic Jacobi matrix are given by studying the relationship of the eigenvalues of periodic Jacobi matrix and its n—1 principal submatrix. Applying these spectral properties, we present a necessary and sufficient condition for the solvability of an inverse problem of periodic Jacobi matrices and discuss the number and the relationship of its solutions. Furthermore, we propose a new algorithm to construct its solution and compare it with the former algorithms. As this inverse problem of periodic Jacobi matrix usually has multiple solutions as many other eigenvalue inverse problems, we study the uniqueness of this problem. And a necessary and sufficient condition is given to ensure its uniqueness, under which an algorithm is presented and the stability analysis is also given. Finally, we put forward a new inverse problem for periodic Jacobi matrix which has not been solved.
对周期Jacobi矩阵特征值反问题,通过研究周期Jacobi矩阵与其n-1阶主子阵特征值的关系,给出了周期Jacobi矩阵的一些新的谱性质;利用这些谱性质,研究了一类周期Jacobi矩阵特征值反问题,用新的方法推导出了该类特征值反问题有解的充分必要条件,并讨论了解的个数以及解与解之间的关系;此外,提出了一种新的构造周期Jacobi矩阵反问题解的数值算法,并与前人的算法做了一定比较;由于周期Jacobi矩阵特征值反问题和其他很多特征值反问题一样往往存在多个解,本论文给出了周期Jacobi矩阵反问题解唯一的充要条件,并发现周期Jacobi矩阵特征值反问题的解唯一当且仅当构造的矩阵满足一定的条件;在解唯一的情况下,给出了构造唯一解的数值算法,并做了相应的稳定性分析;最后,提出了一类新的有待于解决的周期Jacobi矩阵特征值反问题。
-
In this topic, the dynamic analysis methods for piezoelectric vibrator are studied systematically based on the theoretical model, FEM numerical experimentation and FEM governing equation for given compound-mode vibrator, and some valuable conclusions are obtained. The main work accomplished is summarized as follows: 1.Elaborate the main modeling methods for piezoelectric vibrator and the significance and necessity to study the dynamic characteristics of piezoelectric vibrator which emphasize the urgency of this paper. 2.Take the bending deformation induced by piezoelectric ceramic as example, the energy transfer mechanism of electric energy to mechanical energy are analyzed; the motion and force transfer mechanism are analyzed for the longitudinal-bending vibrator. 3.Based on mode assumption and Hamilton principle, the coupling model of piezoelectric vibrator of linear USM is built; moreover, the equivalent circuit model is obtained and a coupling equation represents the relation between electric parameters and mechanical parameters is derived which provides foundation to match the vibrator and driving circuit. 4.Combine the constitutive equation of piezoelectric ceramic with elastic-dynamical equation, geometric equation in force field and the Maxwell equation in electric field and the corresponding boundary condition equation, the FEM control equation for piezoelectric vibrator of USM to solve dynamic electro-mechanical coupling field is established by employing the principle of virtual displacement. The equation lays the foundation to study the non-linear constitutive equation of piezoelectric ceramic driven by high-power. 5.Define the dynamic indexes of characteristic of vibrator and carry out variable parameters simulation by calculating the model parameters and the electric characteristics of vibrator are simulated according to the equivalent circuit model. By numerical experimentation, the working mode of vibration of vibrator and the shock excitation results of the working frequency band which provides the mode frequency to realize bimodal are analyzed. Detailed calculation of the electro-mechanical coupling field parameters is made by programming the FEM control equation.
本课题从理论模型、有限元数值试验、有限元控制模型等方面以复合振动模式振子为例对超声电机压电振子的动力学特性及其分析方法进行了全面系统地研究,得出了许多有价值的结论,主要概括如下: 1、阐述了目前针对超声电机压电振子的主要建模方法,对压电振子动态特性的研究意义和必要性进行了论述,突出了本文研究内容的迫切性; 2、以压电陶瓷诱发弹性体发生弯曲变形为例,分析了压电陶瓷通过诱发应变来实现机电能量转换的机理;对基于纵弯模式的压电振子的运动及动力传递机理进行了分析; 3、基于模态假定,利用分析动力学的Hamilton原理,建立了面向直线超声电机压电振子的机电耦合动力学模型,并据此建立了压电振子的等效电路模型,导出了电参量与动力学特性参量的耦合方程,为压电振子与驱动电路的匹配提供了依据; 4、从压电陶瓷的本构方程出发,综合力场的弹性动力学方程、几何方程、电场的麦克斯韦方程以及相应的边界条件方程,采用虚位移原理,建立了压电振子动态问题机电耦合场求解的有限元控制方程,为研究其大功率驱动下的非线性本构模型奠定了基础; 5、界定压电振子的动力学特性指标,对压电振子的机电耦合动力学模型参数进行计算及变参数仿真;依据等效电路模型,对压电振子的电学特性进行了仿真分析;通过有限元数值实验,对压电振子工作模态附近的模态振型及工作频率附近的频段进行了激振效果分析,找出了实现模态简并的激振频率;利用有限元控制方程,通过编程计算,对压电振子的力电耦合场参数进行了详细计算,得出了一些有价值的结论。
-
The main results are:(1) the L1 boundedness of the Cesaro means operator of the harmonic expansions on the unit sphere with reflection-invariant measures is proved, and the characterization of the convergence index is given; for the points not in the planes with singularities, the pointwise convergence is also proved; these results are the generalizations of those both for the classical spherical harmonic expansions and for the Jacobi expansions;(2) Using the differential-reflection operators of Dunkl type, the uncertainty principle of a class of Sturm-Liouville operators is established, and as consequences, the uncertainty principles of some well-known classical orthogonal expansions such as Jacobi, Hermite and Laguerre expansions are obtained;(3) by introducing the Cauchy-Riemann equations in terms of the differential-reflection operators of two variables, the harmonic analysis of the extended Jacobi expansions is studied; the results include the Lp boundedness and the weak-L1 boundedness of the conjugate extended Jacobi expansions; specially, for some indexes p smaller than 1, the basic theory of the related Hardy spaces is established.
主要成果有:(1)证明了带有反射不变测度的球面调和展开蔡沙罗平均算子的L1有界性,给出了收敛指标的特征刻划,对不在奇性平面上的点,还证明了点态收敛性,这些成果同时推广了经典球面调和展开和雅可比展开的结果;(2)利用Dunkl型的微分-反射算子建立了一类斯特姆-刘威尔算子的测不准原理,并由此得到一些著名的经典正交展开如雅克比展开、赫米特展开和拉盖尔展开的测不准原理;(3)利用由两个变量的微分-反射算子定义的柯西-黎曼方程组来研究扩展雅克比展开的调和分析,证明了共轭扩展雅克比展开的Lp有界性和弱L1有界性,特别是对小于1的一些指标p,建立了相应的哈代空间的基本理论。
- 更多网络解释 与equation of jacobi相关的网络解释 [注:此内容来源于网络,仅供参考]
-
equation of jacobi:雅可比方程
equation of higher order 高阶方程式 | equation of jacobi 雅可比方程 | equation of mixed type 混合型方程