elliptic modular function
- elliptic modular function的基本解释
-
-
椭圆模函数
- 相似词
- 更多 网络例句 与elliptic modular function相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This dissertation investigates the construction of pseudo-random sequences (pseudo-random numbers) from elliptic curves and mainly analyzes their cryptographic properties by using exponential sums over rational points along elliptic curves. The main results are as follows:(1) The uniform distribution of the elliptic curve linear congruential generator is discussed and the lower bound of its nonlinear complexity is given.(2) Two large families of binary sequences are constructed from elliptic curves. The well distribution measure and the correlation measure of order k of the resulting sequences are studied. The results indicate that they are "good" binary sequences which give a positive answer to a conjecture proposed by Goubin et al.(3) A kind of binary sequences from an elliptic curve and its twisted curves over a prime field F_p. The length of the sequences is 4p. The "1" and "0" occur almost the same times. The linear complexity is at least one-fourth the period.(4) The exponential sums over rational points along elliptic curves over ring Z_ are estimated and are used to estimate the well distribution measure and the correlation measure of order k of a family of binary sequences from elliptic curves over ring Z_.(5) The correlation of the elliptic curve power number generator is given. It is proved that the sequences produced by the elliptic curve quadratic generator are asymptotically uniformly distributed.(6) The uniform distribution of the elliptic curve subset sum generator is considered.(7) We apply the linear feedback shift register over elliptic curves to produce sequences with long periods. The distribution and the linear complexity of the resulting sequences are also considered.
本文研究利用椭圆曲线构造的伪随机序列,主要利用有限域上椭圆曲线有理点群的指数和估计讨论椭圆曲线序列的密码性质——分布、相关性、线性复杂度等,得到如下主要结果:(1)系统讨论椭圆曲线-线性同余序列的一致分布性质,即该类序列是渐近一致分布的,并给出了它的非线性复杂度下界;(2)讨论两类由椭圆曲线构造的二元序列的"良性"分布与高阶相关性(correlation of order κ),这两类序列具有"优"的密码性质,也正面回答了Goubin等提出的公开问题;(3)利用椭圆曲线及其挠曲线构造一类二元序列,其周期为4p(其中椭圆曲线定义在有限域F_p上),0-1分布基本平衡,线性复杂度至少为周期的四分之一;(4)讨论了剩余类环Z_上的椭圆曲线的有理点的分布估计,并用于分析一类由剩余类环Z_上椭圆曲线构造的二元序列的伪随机性;(5)讨论椭圆曲线-幂生成器序列的相关性及椭圆曲线-二次生成器序列的一致分布;(6)讨论椭圆曲线-子集和序列的一致分布;(7)讨论椭圆曲线上的线性反馈移位寄存器序列的分布,线性复杂度等性质。
-
This dissertation investigates the construction of pseudo-random sequences (pseudo-random numbers) from elliptic curves and mainly analyzes their cryptographic properties by using exponential sums over rational points along elliptic curves. The main results are as follows:(1) The uniform distribution of the elliptic curve linear congruential generator is discussed and the lower bound of its nonlinear complexity is given.(2) Two large families of binary sequences are constructed from elliptic curves. The well distribution measure and the correlation measure of order k of the resulting sequences are studied. The results indicate that they are "good" binary sequences which give a positive answer to a conjecture proposed by Goubin et al.(3) A kind of binary sequences from an elliptic curve and its twisted curves over a prime field F_p. The length of the sequences is 4p. The "1" and "0" occur almost the same times. The linear complexity is at least one-fourth the period.(4) The exponential sums over rational points along elliptic curves over ring Z_ are estimated and are used to estimate the well distribution measure and the correlation measure of order k of a family of binary sequences from elliptic curves over ring Z_.(5) The correlation of the elliptic curve power number generator is given. It is proved that the sequences produced by the elliptic curve quadratic generator are asymptotically uniformly distributed.(6) The uniform distribution of the elliptic curve subset sum generator is considered.(7) We apply the linear feedback shift register over elliptic curves to produce sequences with long periods. The distribution and the linear complexity of the resulting sequences are also considered.
本文研究利用椭圆曲线构造的伪随机序列,主要利用有限域上椭圆曲线有理点群的指数和估计讨论椭圆曲线序列的密码性质——分布、相关性、线性复杂度等,得到如下主要结果:(1)系统讨论椭圆曲线-线性同余序列的一致分布性质,即该类序列是渐近一致分布的,并给出了它的非线性复杂度下界;(2)讨论两类由椭圆曲线构造的二元序列的&良性&分布与高阶相关性(correlation of order κ),这两类序列具有&优&的密码性质,也正面回答了Goubin等提出的公开问题;(3)利用椭圆曲线及其挠曲线构造一类二元序列,其周期为4p(其中椭圆曲线定义在有限域F_p上),0-1分布基本平衡,线性复杂度至少为周期的四分之一;(4)讨论了剩余类环Z_上的椭圆曲线的有理点的分布估计,并用于分析一类由剩余类环Z_上椭圆曲线构造的二元序列的伪随机性;(5)讨论椭圆曲线-幂生成器序列的相关性及椭圆曲线-二次生成器序列的一致分布;(6)讨论椭圆曲线-子集和序列的一致分布;(7)讨论椭圆曲线上的线性反馈移位寄存器序列的分布,线性复杂度等性质。
-
Device driver includes hardward modular, interrupt modular, function modular, initializtion/finalization modular, character device interface modular and network device interface modular. User processes includes link scan task, layer 3 unicast task , layer 3 multicast task, management interface and network protocols.
设备驱动程序主要包括硬件模块、中断处理模块、功能模块、初始化/卸载模块、字符设备接口模块和网络设备接口模块;用户进程主要包括链路状态扫描任务、三层单播任务、三层组播任务、管理界面和网络协议。
- 更多网络解释 与elliptic modular function相关的网络解释 [注:此内容来源于网络,仅供参考]
-
elliptic modular function:椭圆模函数
他发展曲面的赋向(orientation)观念,证明有向曲面的分类对应於亏格 (genus),并且深入讨论不可赋向的射影面与 Klein 瓶. 另外,他在椭圆模函数 (elliptic modular function) 与自守函数 (automorphic function) 的工作,是 Klein 自认为他一生研究的颠峰.
-
elliptic modular function field:椭圆模函数域
elliptic modular function 椭圆模函数 | elliptic modular function field 椭圆模函数域 | elliptic modular group 椭圆模群