英语人>词典>英汉 : curve graph的中文,翻译,解释,例句
curve graph的中文,翻译,解释,例句

curve graph

curve graph的基本解释
-

曲线图形, 剖点图形

相似词
更多 网络例句 与curve graph相关的网络例句 [注:此内容来源于网络,仅供参考]

The dissertation details the functions and characteristic of curves graph element, polygon graph element, character graph element, dimension graph element, parameter graph element, self-define graph element, and research comprehensively the methods describe and graph element attrib. After discussing the basic graph element collection, this thesis gives the description method, organization way, graph element visitation, save and load efficiency, suitability and so on of every element in the basic graph element collection in greater detail. The author provides a graph element data structure organized version which is length changeable and is a block storage record, and designs a new module of data, which can process both the geometry attrib and no geometry attrib of drawing element. Based on this, the data model of all kind of element is put forward.

对采矿CAD系统中基本图元集的构造原则和组织方法进行了研究,提出了一个7元素采矿CAD基本图元集构造方案;论文详细讨论了曲线图元、字符图元、尺寸标注图元、多边形图元、参数图元、自定义图元在采矿CAD系统中的作用和特点,并对各种图元的表述方法和图元属性及相应的库组织方式、存取效率进行了深入的研究,提出了一个&可变长记录块&图元库结构组织方案;通过对采矿CAD系统中基本图元数据模型的构造方法、存取结构和访问方式的研究,给出了一个用C++语言描述的采矿CAD系统基本图元数据模型及其数据存取结构。

In this paper, firstly, not only the incidence matrix ,adjacent matrix, cycle matrix, cut-set matrix of an undirected graph are summarized, but also the close contact between a graph and its corresponding matrix are discussed ; secondly, many problems of a graph which are solved by analysing its matrix are listed as follows:1、The co-tree set of a graph is obtained by using its cycle-matrix ; 2、The branches of its spanning tree are given by using its cut-set matrix ; 3、By making use of the incidence matrix of a graph ,not only its vertex cut 、cut vertex 、isolated point and spanning tree can be obtained ,but also the two sides which are whether parallel or not can be judged ;4、By using their adjacent matrix ,the two graphes which are whether isomorphous or not can be judged; once more, there is a detailed introduction in view of special graph (for example: bigaritite graph ,regular graph and so on);last but not least, a graph method of calculating the N power of a matrix is given and the practical applications of the theorem for degree is indicated.

本文首先综述了无向图的关联矩阵,邻接矩阵,圈矩阵,割集矩阵以及图和它对应矩阵之间的关系;其次总结出了利用上述各类矩阵可以解决的图的若干问题:1、利用图的圈矩阵可以求其连枝集;2、利用图的割集矩阵可以求其生成树的树枝;3、利用图的关联矩阵不仅可以求其割点、点割集、连通度、孤立点和生成树,而且可以判断两条边是否平行;4、利用图的邻接矩阵可以判断两个图是否同构;再次,针对特殊图(例如:二分图、正则图等等)的邻接矩阵作了详细介绍;最后,得到了利用图计算矩阵的N次幂的方法,指出度数定理的实际应用。

In this paper, a region approximation idea that means using a "fat curve" with a width to approximate the offset curve is proposed, and a complete set of algorithms to approximate offset curve using disk Bézier curve are given and implemented. In the algorithms, the optimal and uniform approximate curve of the offset curve as the central curve of the Disk Bézier curve is found by using Remez method, and then the upper optimal and uniform approximation principle is proposed to compute the error radius function of the Disk Bézier curve. Thus, the whole Disk Bézier curve can be obtained. In the end of this paper, the approximate effect of the Disk Bézier curve is not only analyzed and assessed, but also some specific examples are provided.

提出用一条带宽度的"胖曲线"来逼近上述等距曲线的区域逼近思想,并建立与实现了圆域Bézier曲线等距逼近的整套算法,包括应用Remez方法求出等距曲线的最佳一致逼近曲线作为圆域Bézier曲线的中心曲线,提出上控最佳一致逼近的原理求出圆域Bézier曲线的误差半径函数,以及确定整条圆域Bézier曲线,最后还对该圆域Bézier逼近的效果做了分析和考核,并给出了一些具体实例。

更多网络解释 与curve graph相关的网络解释 [注:此内容来源于网络,仅供参考]

Bar graph:条形图

观察图表是为了准确理解图表所传递的信息. 考生首先要认清图表的形式,抓住其特点. 统计图表一般有两种形式,一种是把统计的数字和被说明的事物直接用表格的形式表现出来,这就是统计表(table). 另一种形式是统计图(graph)如曲线图(line graph),条形图(bar graph)和扇形图(pie graph)等

transition curve;easement curve;spiral transition curve:缓和曲线

单曲线 simple curve | 缓和曲线 transition curve; easement curve; spiral transition curve | 缓和曲线半截变更率 rate of easement curvature; rate of transition curve

Bar graph:柱状图

图表题: 三图一表 -- 柱状图( Bar Graph) 、线形图 (Line Graph) 、饼状图 (Pie Graph) 、表格 (Table) 图表题文章写作逻辑结构: Paragraph I:(1)描述图表:趋势描写; (2)描述图表:必要数据支持(细节性).