conjugate quaternion
- conjugate quaternion的基本解释
-
-
共轭四元数
- 更多网络例句与conjugate quaternion相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The research of matrixes is continuously an important aspect of the quaternion division algebra. The purpose of this paper is to discuss the property of skew self-conjugate matrix. The definition of skew self-conjugate matrix on real quaternion division algebra is given.
四元数体上矩阵的研究是四元数代数理论中的一个重要方面,本文研究实四元数体上斜自共轭矩阵的性质,给出实四元数体上斜自共轭矩阵的定义。
-
Basing on the famous Schur theorem on real quaternion division algebra and the operation of matrix, some properties and judging criterions of skew self-conjugate matrix are obtained. Several theorems about characteristic value, similar decomposition and real expression of skew self- conjugate matrix are gained.
借助四元数体上的Schur三角分解定理和体上矩阵的运算,得到了斜自共轭矩阵的一些性质及判定准则,获得了斜自共轭矩阵的实表示、相似分解以及特征值的几个定理。
-
It is studied factorizing a matrix over quaternion field to the product of two self-conjugate matrices. And some useful results are obtained.
摘要研究了四元数矩阵分解为两个自共轭矩阵乘积,其中有一个是非奇异阵的条件,得到了一些有用的结果。
- 更多网络解释与conjugate quaternion相关的网络解释 [注:此内容来源于网络,仅供参考]
-
conjugate quaternion:共轭四元数
conjugate points 共轭点 | conjugate quaternion 共轭四元数 | conjugate root 共轭根