cohomology algebra
- cohomology algebra的基本解释
-
-
上同调代数
- 更多网络例句与cohomology algebra相关的网络例句 [注:此内容来源于网络,仅供参考]
-
As a second year graduate textbook, Cohomology of Groups introduces students to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites.
作为第2本年毕业生教科书,组的Cohomology有最少的必要条件向学生介绍cohomology 理论(与在代数和拓扑之间的丰富的相关作用有关)。
-
In particular, we compute Hochschild homology and cohomology groups of infinitedimensional path algebras and some of their quotient algebras, and we prove that for a general monomial algebra (not necessary finite-dimensional), all Hochschild cohomology groups of positive degrees vanish if and only if its Gabriel quiver is a finite tree.
特别地,我们计算了无限维路代数以及某些商代数的Hochschild同调群和上同调群,而且给出了一般单项代数的各正次Hochschild上同调群为零的充分必要条件,即它的Gabriel箭图是有限树。
-
In chapter 5, local derivations and local automorphisms of nest subalgebras in von Neumann algebras and local higher cohomology -local 2-cocycles are studied. It is proved that every weakly continuous local derivation, respectively, every weakly local automorphism, of nest subalgebra of a factor von Neumann algebra is a derivation, respectively, an automorphism. Every norm continuous local derivation, respectively, every norm local automorphism, of the nest subalgebra associated to a countable nest in a factor von Neumann algebra is a derivation, respectively, an automorphism. Moreover, it is answered Larson's question. Finally, it is shown that every local 2-cocycle of any von Neumann algebra is a 2-cocycle.
第五章研究von Neumann代数中套子代数的局部导子和局部同构以及von Neumann代数的高维局部映射—局部2-上循环,证明了因子von Neumann代数中套子代数的每一个局部强连续导子和局部强连续同构分别是导子和同构;可数套所对应的套子代数的每一个有界局部导子和有界局部同构分别是导子和同构;同时,部分回答了Larson所提的问题;最后,得到von Neumann代数的每一个局部2-上循环是2-上循环。
- 更多网络解释与cohomology algebra相关的网络解释 [注:此内容来源于网络,仅供参考]
-
cohomology algebra:上同碟数
cohomology 上同调 | cohomology algebra 上同碟数 | cohomology class 上同掂
-
cohomology algebra:上同调代数
cohomological dimension | 上同调维数 | cohomology algebra | 上同调代数 | cohomology class | 上同调类