binomial equation
- binomial equation的基本解释
-
-
二项式方程, 二次方程
- 相似词
- 更多 网络例句 与binomial equation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this topic, the dynamic analysis methods for piezoelectric vibrator are studied systematically based on the theoretical model, FEM numerical experimentation and FEM governing equation for given compound-mode vibrator, and some valuable conclusions are obtained. The main work accomplished is summarized as follows: 1.Elaborate the main modeling methods for piezoelectric vibrator and the significance and necessity to study the dynamic characteristics of piezoelectric vibrator which emphasize the urgency of this paper. 2.Take the bending deformation induced by piezoelectric ceramic as example, the energy transfer mechanism of electric energy to mechanical energy are analyzed; the motion and force transfer mechanism are analyzed for the longitudinal-bending vibrator. 3.Based on mode assumption and Hamilton principle, the coupling model of piezoelectric vibrator of linear USM is built; moreover, the equivalent circuit model is obtained and a coupling equation represents the relation between electric parameters and mechanical parameters is derived which provides foundation to match the vibrator and driving circuit. 4.Combine the constitutive equation of piezoelectric ceramic with elastic-dynamical equation, geometric equation in force field and the Maxwell equation in electric field and the corresponding boundary condition equation, the FEM control equation for piezoelectric vibrator of USM to solve dynamic electro-mechanical coupling field is established by employing the principle of virtual displacement. The equation lays the foundation to study the non-linear constitutive equation of piezoelectric ceramic driven by high-power. 5.Define the dynamic indexes of characteristic of vibrator and carry out variable parameters simulation by calculating the model parameters and the electric characteristics of vibrator are simulated according to the equivalent circuit model. By numerical experimentation, the working mode of vibration of vibrator and the shock excitation results of the working frequency band which provides the mode frequency to realize bimodal are analyzed. Detailed calculation of the electro-mechanical coupling field parameters is made by programming the FEM control equation.
本课题从理论模型、有限元数值试验、有限元控制模型等方面以复合振动模式振子为例对超声电机压电振子的动力学特性及其分析方法进行了全面系统地研究,得出了许多有价值的结论,主要概括如下: 1、阐述了目前针对超声电机压电振子的主要建模方法,对压电振子动态特性的研究意义和必要性进行了论述,突出了本文研究内容的迫切性; 2、以压电陶瓷诱发弹性体发生弯曲变形为例,分析了压电陶瓷通过诱发应变来实现机电能量转换的机理;对基于纵弯模式的压电振子的运动及动力传递机理进行了分析; 3、基于模态假定,利用分析动力学的Hamilton原理,建立了面向直线超声电机压电振子的机电耦合动力学模型,并据此建立了压电振子的等效电路模型,导出了电参量与动力学特性参量的耦合方程,为压电振子与驱动电路的匹配提供了依据; 4、从压电陶瓷的本构方程出发,综合力场的弹性动力学方程、几何方程、电场的麦克斯韦方程以及相应的边界条件方程,采用虚位移原理,建立了压电振子动态问题机电耦合场求解的有限元控制方程,为研究其大功率驱动下的非线性本构模型奠定了基础; 5、界定压电振子的动力学特性指标,对压电振子的机电耦合动力学模型参数进行计算及变参数仿真;依据等效电路模型,对压电振子的电学特性进行了仿真分析;通过有限元数值实验,对压电振子工作模态附近的模态振型及工作频率附近的频段进行了激振效果分析,找出了实现模态简并的激振频率;利用有限元控制方程,通过编程计算,对压电振子的力电耦合场参数进行了详细计算,得出了一些有价值的结论。
-
NMath Stats contains a data table class with functions for computing descriptive statistics, such as mean, variance, standard deviation, percentile, median, quartiles, geometric mean, harmonic mean, RMS, kurtosis, skewness, and many more; PDF, CDF, inverse CDF, and random variable moments for a variety of probability distributions, including normal, Poisson, chi-square, gamma, beta, Student's t, F, binomial, and negative binomial; Combinatorial functions, such as factorial, log factorial, binomial coefficient, and log binomial; Multiple linear regression; Basic hypothesis tests, such as z-test, t-test, and F-test, with calculation of p-values, critical values, and confidence intervals; One-way and two-way analysis of variance and analysis of variance with repeated measures; Multivariate statistical analyses, including principal component analysis and hierarchical cluster analysis.
nmath统计包含一个数据表的阶层与职能计算描述性统计,如平均,方差,标准差,百分位,中位数, 25 %,几何平均数,调和的意思是,有效值,峭度,偏度,还有更多的; PDF格式,民防部队,逆民防部队,并随机变量矩的各种概率分布,包括正常,泊松,卡方检定,伽玛,测试版,学生的吨,男,二项式,并负二项分布;组合的功能,例如阶乘,日志阶乘,二项式系数,并登入二项式;多元线性回归;基本假设测试,如的Z测试, t检验, F检验,计算p值,临界值,和置信区间;之一,双向和双方法方差分析和方差分析与反复的措施;多元统计分析,包括主成分分析和聚类分析。
-
Therefore, in this article,we first discussed the compound negative binomial, it able to simultaneously fitthe claim size and the claim number. At the same time, we studied the sum of themutually independent compound negative binomial and the sum of the mutuallyindependent compound negative binomial with discount factor and the sum of themaximal compound negative binomial; Next, for the claim data to be better fitted, this article has establishedthe superposition distributed model about the weighted average of the discreterandom and has discussed the estimation method of the parameters of thesuperposition distribution; Once more, we in detail elaborated the NCD which based on the claim numberand the NCD which based on the claim size and the claim number. Besides, weestablished an applied NCD model which also based on the claim size and the claimnumber; At last, we introduced the rewards and punishment coefficient of automobiletravel region into the applied NCD model, availably consummated the present NCD.
因此,本文首先讨论了能拟合索赔额大小和索赔次数的复合负二项分布,并对相互独立的复合负二项分布的和、带有折现因子的相互独立的复合负二项分布的和以及最大复合负二项分布进行了研究;其次,为了更好地拟合索赔数据,本文建立了离散随机变量加权平均的叠加分布模型,并讨论了其中的权数的估计方法;再次,本文详细阐述了基于索赔次数的无赔款优待系统、考虑索赔次数和索赔额大小的无赔款优待系统以及应用型的同时考虑索赔次数和索赔大小的无赔款优待系统;最后,本文在无赔款优待系统中引入了汽车行驶区域奖惩系数,对现行的无赔款优待系统进行了完善。
- 更多网络解释 与binomial equation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
binomial equation:二项方程
binomial distribution 二项分布 | binomial equation 二项方程 | binomial expansion 二项展开式
-
binomial equation:二项方程式
Binomial distribution 二项分配(布) | Binomial equation 二项方程式 | Binomial expansion 二项展开式
-
binomial equation:二项式方程, 二次方程
binomial distribution probability | 二项式分布概率 | binomial equation | 二项式方程, 二次方程 | binomial expansion | 二项展开式
-
binomial equation:二次方程,二项方程
binomial differentia 二项式微分 | binomial equation 二次方程,二项方程 | binomial expansion 二项展开式
-
binomial differential equation:二项微分方程
binomial differential 二项式微分 | binomial differential equation 二项微分方程 | binomial distribution 二项分布