bimodule
- bimodule的基本解释
-
-
双模
- 更多网络例句与bimodule相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Let H be a bialgebra , M be an H - Hopf bimodule .Suppose H⊕M is a bialgebra .
设H是双代数,M是H - Hopf双模,再设H⊕M是双代数。
-
Next, we discuss the relations between left quasi-dual bimodules and left dual-bimodules, we obtain that a left quasi-dual bimodule is a left dual bimodule if it satisfies one of the following conditions: sM is minimal injective and MR is a M-minimal injective kasch-module; MR is a M-minimal injective kasch-module and for any two ideals LI and L2 ofSS rM(L1 n L2)-rw(L1)+rM(I2); sM is minimal injective and for any two submodules A and B of MR,Lastly, we applicate the quasi-duality on smash product algebra R#H, and obtain an answer of the semiprime problem, i.e., let H be a finite-dimensional semisimple Hopf algebra and R be an H-module algebra, if R is left quasi-dual and semiprime, then R#H is semiprime.
我们得到:一个左拟对偶双边模如果满足下列条件之一,则它将成为一个左对偶双边模:_sM是单内射的并且M_R是一个M-单内射kasch-模;M_R是一个M-单内射kasch-模并且对_sS的任意两个理想,有r_M(L_1∩L_2)=r_M(L_1)+r_M(L_2);_sM是单内射的且对M_R的任意两个子模,有l_s=l_s+l_s。2 在第2.3节中我们将拟对偶性应用于smash积代数R#H,部分解决了半素问题。
- 更多网络解释与bimodule相关的网络解释 [注:此内容来源于网络,仅供参考]
-
bimodule:双模
bimodal distribution 双峰分布 | bimodule 双模 | binary 二元的
-
flat bimodule:平坦双模
flat billet 平错齿饰 | flat bimodule 平坦双模 | flat bit 平钻,扁钻