英语人>词典>英汉 : biharmonic equation的中文,翻译,解释,例句
biharmonic equation的中文,翻译,解释,例句

biharmonic equation

biharmonic equation的基本解释
-

双调和方程, 双低方程

相似词
更多 网络例句 与biharmonic equation相关的网络例句 [注:此内容来源于网络,仅供参考]

In this topic, the dynamic analysis methods for piezoelectric vibrator are studied systematically based on the theoretical model, FEM numerical experimentation and FEM governing equation for given compound-mode vibrator, and some valuable conclusions are obtained. The main work accomplished is summarized as follows: 1.Elaborate the main modeling methods for piezoelectric vibrator and the significance and necessity to study the dynamic characteristics of piezoelectric vibrator which emphasize the urgency of this paper. 2.Take the bending deformation induced by piezoelectric ceramic as example, the energy transfer mechanism of electric energy to mechanical energy are analyzed; the motion and force transfer mechanism are analyzed for the longitudinal-bending vibrator. 3.Based on mode assumption and Hamilton principle, the coupling model of piezoelectric vibrator of linear USM is built; moreover, the equivalent circuit model is obtained and a coupling equation represents the relation between electric parameters and mechanical parameters is derived which provides foundation to match the vibrator and driving circuit. 4.Combine the constitutive equation of piezoelectric ceramic with elastic-dynamical equation, geometric equation in force field and the Maxwell equation in electric field and the corresponding boundary condition equation, the FEM control equation for piezoelectric vibrator of USM to solve dynamic electro-mechanical coupling field is established by employing the principle of virtual displacement. The equation lays the foundation to study the non-linear constitutive equation of piezoelectric ceramic driven by high-power. 5.Define the dynamic indexes of characteristic of vibrator and carry out variable parameters simulation by calculating the model parameters and the electric characteristics of vibrator are simulated according to the equivalent circuit model. By numerical experimentation, the working mode of vibration of vibrator and the shock excitation results of the working frequency band which provides the mode frequency to realize bimodal are analyzed. Detailed calculation of the electro-mechanical coupling field parameters is made by programming the FEM control equation.

本课题从理论模型、有限元数值试验、有限元控制模型等方面以复合振动模式振子为例对超声电机压电振子的动力学特性及其分析方法进行了全面系统地研究,得出了许多有价值的结论,主要概括如下: 1、阐述了目前针对超声电机压电振子的主要建模方法,对压电振子动态特性的研究意义和必要性进行了论述,突出了本文研究内容的迫切性; 2、以压电陶瓷诱发弹性体发生弯曲变形为例,分析了压电陶瓷通过诱发应变来实现机电能量转换的机理;对基于纵弯模式的压电振子的运动及动力传递机理进行了分析; 3、基于模态假定,利用分析动力学的Hamilton原理,建立了面向直线超声电机压电振子的机电耦合动力学模型,并据此建立了压电振子的等效电路模型,导出了电参量与动力学特性参量的耦合方程,为压电振子与驱动电路的匹配提供了依据; 4、从压电陶瓷的本构方程出发,综合力场的弹性动力学方程、几何方程、电场的麦克斯韦方程以及相应的边界条件方程,采用虚位移原理,建立了压电振子动态问题机电耦合场求解的有限元控制方程,为研究其大功率驱动下的非线性本构模型奠定了基础; 5、界定压电振子的动力学特性指标,对压电振子的机电耦合动力学模型参数进行计算及变参数仿真;依据等效电路模型,对压电振子的电学特性进行了仿真分析;通过有限元数值实验,对压电振子工作模态附近的模态振型及工作频率附近的频段进行了激振效果分析,找出了实现模态简并的激振频率;利用有限元控制方程,通过编程计算,对压电振子的力电耦合场参数进行了详细计算,得出了一些有价值的结论。

Several important nonlinear equations of mathematical physics such as φ4 equation, Klein-Gordon equation, the approximate equations of sine-Gordon equation and sinhGordon equation, Landau-Ginzburg-Higgs equation, Duffing equation, nonlinear telegraph equation are the special cases of the nonlinear wave equation presented in this paper.

几个有重要应用的非线性数学物理方程,如矿方程,Klein-Gordon方程,Sine-Gordon方程,及Sinh-Gordon方程的近似,Landau-Ginzburg-Higgs方程,Duffing方程,非线性电报方程等都可作为该方程的特殊情形得到相应的显式精确解,这里方法也可推广到n+1维空间情形。

Chapter 9: We report a large quantity of numerical experiments of 13 different algebraic multigrid algorithms for solving the Poisson equation, anisotropic equation, equation with cross-derivative terms, general matrix problems with large off-diagonal positive entries, biharmonic equation, Toeplity matrix, elasticity systems, finite element discretization of the Laplacian and even 3D problems. Particular attention is focused on asymptotic convergence factors and CPU-time consumed. Numerical results for many different types of practical problems demonstrate the efficiency and robustness of the proposed algebraic multigrid methods.

第九章:在各种代数多重网格算法的基础上,进行了大量的数值试验,具体给出了十三种不同的代数多重网格方法求解泊松方程,各向异性方程,带混合导数项的方程,带有大的非对角正元素的一般矩阵问题,重调和方程,托普利兹矩阵,弹性力学方程组,拉普拉斯算子的有限元离散,甚至三维问题的较为丰富的数值结果,重点关注它们的渐近收敛因子和所需的CPU时间,来源于不同类型问题的计算结果既为代数多重网格理论分析和算法的改进提供了很实用的资料,同时也证实了本文给出的代数多重网格算法的效绩和稳健性。

更多网络解释 与biharmonic equation相关的网络解释 [注:此内容来源于网络,仅供参考]

biharmonic equation:双低方程

biharmonic 双低的 | biharmonic equation 双低方程 | biharmonic function 双低函数

biharmonic equation:双调和方程

Biharisporites 比哈尔大孢属 | biharmonic equation 双调和方程 | biharmonic function 双调和函数

biharmonic equation:重調和方程式

BIH, Bureau International de l'Heure 国際標準時局 | biharmonic equation 重調和方程式 | biharmonic function 重調和関数

biharmonic equation:双谐方程式

bifurcation point 分歧点 | biharmonic equation 双谐方程式 | biharmonic function 双谐函数

biharmonic partial differential equation:abbr. bipde; 双调和偏微分方程式

加载更多网络解释 (1)