bifurcation [,baifə'keiʃən]
- bifurcation的基本解释
-
n.
分叉, 分歧, 分歧点, 分岐, 分岐点
- 相似词
- 拼写相近单词
- bifurcational
- bifurcations
- 拼写相近词组、短语
- bifurcation point
- bifurcation theory
- 更多 网络例句 与bifurcation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this thesis, we take the delay r as a bifurcation parameter to investigate the Hopf bifurcation phenomenon in system (1). By analyzing the associated characteristic transcendental equation of system (2), and using the Hopf bifurcation theorem, we obtain one condition for the existence of Hopf bifurcation in system (1). Furthermore, based on the center manifold theorem and the method of normal form, some interesting results about the properties of Hopf bifurcation are obtained, including the direction of Hopf bifurcation and stability of Hopf bifurcating periodic solutions.
我们以时滞T作为分支参数,研究了系统(1)的Hopf分支现象:通过分析系统(2)的特征超越方程,结合利用Hopf分支定理获得了系统(1)的Hopf分支存在的一个条件;利用中心流形定理和正规形方法分析了系统(1)的Hopf分支的性质,包括分支的方向和分支周期解的稳定性。
-
Algorithm application of neural networks.Ⅲ Implementation of neuro-computers. The main contribution of the dissertation can be summarized as follows: 1 Hopf bifurcation of three kind of neural networks are discussed in detail, including type of discrete time delay, type of time delay with weak kernel and strong kernel as well as the proof of existence of bifurcation. Other problems such as asymptotic stability of bifurcation periodic solution, algorithm of determining the bifurcation direction, asymptotic stability and style of periodic solution are also studied. The average time delay is chosen as the bifurcation parameter, phenomena pertinent to system states of the continuous time delay network with strong kernel evolving from stable to oscillating, then back to stable again are observed.
论文的主要创新之处可以归纳如下: 1)针对目前国内外对神经网络的分岔研究较少的情况,论文中详细讨论了带离散时延神经网络、带弱核的连续时延神经网络、带连续分布时延且具有强核的神经网络的Hopf分岔现象,从理论上证明了Hopf分岔的存在性,并研究了分岔周期解的渐近稳定性,得到了确定周期解的渐近稳定性、分岔方向、周期解的渐近形式的算法;用平均时延作为分岔参数,发现带强核的连续时延神经网络中存在着系统的状态由稳定变化到振荡现象,当继续增加平均时延参数时,又从振荡变为稳定这一特殊的动力学现象。
-
What differ from that of the researchers in the past is the consideration of the direction of Hopf bifurcation with Dirichlet boundary condition , that is, the conditions when the Hopf bifurcation periodic solutions are orbitally asymptotically stable with asymptotic phase.Our basic idea come from the results given by Tang[30]. We adopt the method used by Hassard in the Hopf bifurcation theorem in [24], which is to judge the existence and the direction of Hopf bifurcation, and the stability of the Hopf bifurcation periodic solutions.
与以前的研究者不同的是,本文不仅讨论了在Dirichlet边界条件下系统的Hopf分支在以扩散系数为分支参数的情况下的存在性和分支周期解的空间非齐次性,而且更多的关注了系统在Dirichlet边界条件下Hopf分支解的稳定性及Hopf分支的方向,也即系统定态解在何种条件下,当分支参数如何变化时产生Hopf分支且分支周期解是带渐近位相轨道渐近稳定的。
- 更多网络解释 与bifurcation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
bifurcation:分叉
一个系统在动态发展的过程中,有时会出现"分叉"(Bifurcation)所谓"分叉",指的就是通常所谓的"质变",因而在"分叉"之前,必然各种正面负面能量以超级规模大集合、大汇演;稍有闪失,即会进入某条后悔莫及的不归路.
-
bifurcation:分歧
在整个编码转换的过程中,时间作为惟一的不可预知的因素,在演化结构中可能会出现分歧(bifurcation)的决定性作用. 每一个生成路径的起始端在一开始就设定了时间量. 很明显,开始的时间总是不同的. 伴随着各自的加速或减速,
-
bifurcation:分支
由此观之,两岸关系发展由於演变分支(Bifurcation)的增加而愈趋复杂. 最新的浑沌论(Chaos)告知,如果一个问题的变化分支(即变化的可能性)由一而二,由二而四等等,最终将失去对变化的预言能力,说得通俗一点,叫做未来受偶然因素强烈支配,
-
bifurcation:分歧点
第五类的隐晦出现在动力系统. 有些现象是动态的,相反的力量互相对抗,产生一些隐晦,譬如说分歧点 (bifurcation) 就是一种.
-
bifurcation point:歧点
bifocus 双焦点 | bifurcation point 歧点 | bifurcator 二分叉器
- 加载更多网络解释 (19)