approximable
- approximable的基本解释
-
-
[计] 可逼近的
- 更多网络例句与approximable相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We give examples to show that some infinite objects can be approximable and some can not.
本文举例说明,并不是任意的无穷形式对象都可以被逼近。
-
We prove that the well limit behavior can be used to get sufficient conditions for an infinite object to be approximable.
本文发现了统一的充分条件保证一类无穷形式对象可逼近,这一充分条件正是形式系统序列的良极限行为。
-
The well limit behavior can be used to get sufficient conditions for an infinite object to be approximable, for a theory to be limit decidable and for an incremental computation to be correct.
良极限行为可以用于获得如下无穷形式对象可逼近的充分条件、使用极限判定方法的充分条件和增量式计算正确性的充分条件。
-
If we hope to use a sequence of finite objects to approximate infinite objects, then we should know what kinds of infinite objects are approximable and how to approximate them effectively.
无穷形式对象可逼近的充分条件为了研究哪一类无穷对象可以逼近以及如何有效地逼近它们,我们用过程模式作为无穷对象上的计算的模型,用以刻画接受无穷输入、生成无穷输出的无穷对象上的计算。
-
It is proved that if'sparse NP complete sets under polynomial-time Turing reductions exist'then 'SAT is polynomial-time non-adaptively search reducible to decision', and that if 'P is not equal to NP'then either'SAT is not polynomial-time non-adaptively search reducible to decision'or'SAT is not polynomial-time truth-table reducible to bounded approximable sets', and that if'P is not equal to NP'then'sparse complete sets for NP under polynomial-time disjunctive reductions do not exist'.
因为用现有的证明技术不可能绝对地解决这个假设,本文研究了这个假设与其他关于SAT结构性质的假设之间的关系,证明了如果'NP有多项式时间图灵归约下的稀疏完全集'则'SAT是多项式时间并行地搜索归约为判定',以及如果假设'P不等于NP',则要么'SAT不是多项式时间并行地搜索归约为判定',要么'SAT不能用多项式时间真值表归约归约为有界可近似集'。
- 更多网络解释与approximable相关的网络解释 [注:此内容来源于网络,仅供参考]
-
approximable:可逼近的
approximability 可逼近性 | approximable 可逼近的 | approximate 近似的;使近似
-
approximable in polynomial time:多项式时间可近似
核准的订单 approved order | 多项式时间可近似 approximable in polynomial time | 近似分析 approximate analysis