aitken interpolation
- aitken interpolation的基本解释
-
-
艾特肯插值
- 相似词
- 拼写相近词组、短语
- aitken interpolation formula
- 更多 网络例句 与aitken interpolation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
Furthermore,we present the method for designing quadratic Bezier developable surface:give four corner points of developable surface and two free designing parameters,the other two control vertexes are on the line connecting the linear interpolation point between the first two control vertexes and the linear interpolation point between the last two control vertexes,and they are the linear interpolation points between these two linear interpolation points respectively,namely,these four linear interpolation points are colinear.
提出了二次Bézier可展曲面的设计方法:给定可展曲面的4个角点a0、b0、a2、b2和两个自由设计参数?姿、?滋,则待求的2个控制顶点a1、b1是在前2个控制顶点a0、b0的线性插值点a*与后2个控制顶点a2、b2的线性插值点b*的连线上,并且也是a*、b*这2个线性插值点的线性插值,即这4点a*、a1、b1、b*共线。
- 更多网络解释 与aitken interpolation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
aitken interpolation:艾特肯插值
airy integral 亚里积分 | aitken interpolation 艾特肯插值 | aitken interpolation formula 艾特肯插值公式
-
aitken interpolation:埃特金插值
插值机理:Interpolation mechanism | 埃特金插值:Aitken interpolation | 形状插值:shape interpolation
-
aitken interpolation:的全文例句
Aitken interpolation的例句: | Aitken interpolation的全文例句: | Aitken interpolation的相关翻译词汇:
-
aitken interpolation:的例句
多变量插值:Multivariate interpolation | Aitken interpolation的例句: | Aitken interpolation的全文例句:
-
aitken interpolation formula:艾特肯插值公式
aitken interpolation 艾特肯插值 | aitken interpolation formula 艾特肯插值公式 | albanese variety 阿尔巴内斯簇
- 加载更多网络解释 (1)