adjoint operator
- adjoint operator的基本解释
-
-
[化] 伴随算符
- 相似词
- 更多 网络例句 与adjoint operator相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Op1 + op2 The addition operator will add two numbers. op1 - op2 The subtraction operator will subtract two numbers. op1 * op2 The multiplication operator will multiply two numbers. op1 / op2 The division operator will divide two numbers. op1 % op2 The modulus operator will return the remainder of the division of two integer operands. op1 xx op2 The exponentiation operator will raise op1 to the power of op2.++op1 The pre-increpment operator will increase the value of op1 first, then assign it. op1++ The post-increment operator will increase the value of op1 after it is assigned.--op1 The pre-decrement operator will decrease the value of op1 before it is assigned. op1-- The post-decrement operator will decrease the value of op1 after it is assigned.
op1 + op2 对两个数值做加法操作 op1 - op2 对两个数值做减法操作 op1 * op2 对两个数值做乘法操作 op1 / op2 对两个数值做除法操作 op1 % op2 求两个整型数值的余数 op1 xx op2 求幂操作:求 op1 的 op2 次幂++op1 前加操作: op1 的值先增加,然后将值赋给自身 op1++后加操作: op1 的值先赋给自身,再增加值--op1 前减操作: op1 的值先减少,然后将值赋给自身 op1—后减操作: op1 的值先赋给自身,再减少值
-
In this paper,a systematic direct perturbation method of dark solitons is found.Having analyzed the mistakes in earlier works on perturbation method for dark solitonsand essence of the direct perturbation method for bright solitons,we notice that to in-troduce the adjoint solutions of the squared Jost solutions and to prove the completenessare crucial to the problem.Giving up the unnecessary scheme of introducing the adjointoperator in the bright soliton case,we directly find the adjoint solutions by meetingthe demand for the orthogonality that inner product of the squared Jost solutions andits adjoint should be proportional to a δ function in the case of continuous spectra.The corresponding adjoint operator is thus found.Taking into account the reductiontransformation,we find a correct description for the completeness of the squared Jostsolutions and directly verify its validity with explicit expressions of the squared Jostsolutions.
本论文建立了系统的暗孤子直接微扰方法,在对前人关于暗孤子微扰方法的错误以及亮孤子直接微扰方法的本质作了充分的分析后,认识到引入平方Jost解的伴随解和证明完备性是问题的关键,撇开过去亮孤子情况首先引入伴随算子的非必要作法,直接从平方Jost解与其伴随解的内积在连续谱时正比于δ函数这一正交性要求出发,找出了伴随解,同时得出了应有的伴随算子,在考虑到约化变换性后,得到了暗孤子情况的平方Jost解的完备性的正确表述,并在单个暗孤子的情况利用平方Jost解的显式直接验证了它的正确性。
-
We also give all positive self-adjoint extensions ofsingular differential operators,and all positive self-adjoint operators generated by theproducts of differential expressions 〓,where l is an nth order differentialexpression.The result that each positive self-adjoint operator is not necessarily theform of operator product 〓.This answers an open problem proposed by theauthors recently.
我们也给出了奇型微分算子的所有正自伴扩张形式及乘积微分算式〓所诱导的所有正自伴算子形式,证明〓所诱出的正自伴算子不必须是由算子乘积〓为l所生成的算子)的形式,从而回答了作者新近提出的一个公开问题。
- 更多网络解释 与adjoint operator相关的网络解释 [注:此内容来源于网络,仅供参考]
-
adjoint operator:伴随算子
adjoint matrix 伴随矩阵 | adjoint operator 伴随算子 | adjoint variable 伴随变量
-
adjoint operator:伴算子
绝热温度 adiabatic temperature | 伴算子 adjoint operator | 可蝶的 adjustable
-
adjoint operator:伴随算符
adjoint differential equation 伴随微分方程 | adjoint operator 伴随算符 | adjoint system 伴随系
-
adjoint operator:共轭算子
平滑算子:smooth operator | 共轭算子:adjoint operator | 能力算子:capability operator
-
self adjoint operator:自伴算符
self adjoint extension 自伴扩张 | self adjoint operator 自伴算符 | self blocking 阻挡效应
- 加载更多网络解释 (6)