adjoint difference equation
- adjoint difference equation的基本解释
-
-
伴随差分方程
- 相似词
- 更多 网络例句 与adjoint difference equation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this topic, the dynamic analysis methods for piezoelectric vibrator are studied systematically based on the theoretical model, FEM numerical experimentation and FEM governing equation for given compound-mode vibrator, and some valuable conclusions are obtained. The main work accomplished is summarized as follows: 1.Elaborate the main modeling methods for piezoelectric vibrator and the significance and necessity to study the dynamic characteristics of piezoelectric vibrator which emphasize the urgency of this paper. 2.Take the bending deformation induced by piezoelectric ceramic as example, the energy transfer mechanism of electric energy to mechanical energy are analyzed; the motion and force transfer mechanism are analyzed for the longitudinal-bending vibrator. 3.Based on mode assumption and Hamilton principle, the coupling model of piezoelectric vibrator of linear USM is built; moreover, the equivalent circuit model is obtained and a coupling equation represents the relation between electric parameters and mechanical parameters is derived which provides foundation to match the vibrator and driving circuit. 4.Combine the constitutive equation of piezoelectric ceramic with elastic-dynamical equation, geometric equation in force field and the Maxwell equation in electric field and the corresponding boundary condition equation, the FEM control equation for piezoelectric vibrator of USM to solve dynamic electro-mechanical coupling field is established by employing the principle of virtual displacement. The equation lays the foundation to study the non-linear constitutive equation of piezoelectric ceramic driven by high-power. 5.Define the dynamic indexes of characteristic of vibrator and carry out variable parameters simulation by calculating the model parameters and the electric characteristics of vibrator are simulated according to the equivalent circuit model. By numerical experimentation, the working mode of vibration of vibrator and the shock excitation results of the working frequency band which provides the mode frequency to realize bimodal are analyzed. Detailed calculation of the electro-mechanical coupling field parameters is made by programming the FEM control equation.
本课题从理论模型、有限元数值试验、有限元控制模型等方面以复合振动模式振子为例对超声电机压电振子的动力学特性及其分析方法进行了全面系统地研究,得出了许多有价值的结论,主要概括如下: 1、阐述了目前针对超声电机压电振子的主要建模方法,对压电振子动态特性的研究意义和必要性进行了论述,突出了本文研究内容的迫切性; 2、以压电陶瓷诱发弹性体发生弯曲变形为例,分析了压电陶瓷通过诱发应变来实现机电能量转换的机理;对基于纵弯模式的压电振子的运动及动力传递机理进行了分析; 3、基于模态假定,利用分析动力学的Hamilton原理,建立了面向直线超声电机压电振子的机电耦合动力学模型,并据此建立了压电振子的等效电路模型,导出了电参量与动力学特性参量的耦合方程,为压电振子与驱动电路的匹配提供了依据; 4、从压电陶瓷的本构方程出发,综合力场的弹性动力学方程、几何方程、电场的麦克斯韦方程以及相应的边界条件方程,采用虚位移原理,建立了压电振子动态问题机电耦合场求解的有限元控制方程,为研究其大功率驱动下的非线性本构模型奠定了基础; 5、界定压电振子的动力学特性指标,对压电振子的机电耦合动力学模型参数进行计算及变参数仿真;依据等效电路模型,对压电振子的电学特性进行了仿真分析;通过有限元数值实验,对压电振子工作模态附近的模态振型及工作频率附近的频段进行了激振效果分析,找出了实现模态简并的激振频率;利用有限元控制方程,通过编程计算,对压电振子的力电耦合场参数进行了详细计算,得出了一些有价值的结论。
-
In this paper,a systematic direct perturbation method of dark solitons is found.Having analyzed the mistakes in earlier works on perturbation method for dark solitonsand essence of the direct perturbation method for bright solitons,we notice that to in-troduce the adjoint solutions of the squared Jost solutions and to prove the completenessare crucial to the problem.Giving up the unnecessary scheme of introducing the adjointoperator in the bright soliton case,we directly find the adjoint solutions by meetingthe demand for the orthogonality that inner product of the squared Jost solutions andits adjoint should be proportional to a δ function in the case of continuous spectra.The corresponding adjoint operator is thus found.Taking into account the reductiontransformation,we find a correct description for the completeness of the squared Jostsolutions and directly verify its validity with explicit expressions of the squared Jostsolutions.
本论文建立了系统的暗孤子直接微扰方法,在对前人关于暗孤子微扰方法的错误以及亮孤子直接微扰方法的本质作了充分的分析后,认识到引入平方Jost解的伴随解和证明完备性是问题的关键,撇开过去亮孤子情况首先引入伴随算子的非必要作法,直接从平方Jost解与其伴随解的内积在连续谱时正比于δ函数这一正交性要求出发,找出了伴随解,同时得出了应有的伴随算子,在考虑到约化变换性后,得到了暗孤子情况的平方Jost解的完备性的正确表述,并在单个暗孤子的情况利用平方Jost解的显式直接验证了它的正确性。
-
The optimal control law obtained consists of linear analytic functions and a compensation term which is a series sum of the adjoint vectors. The analytic functions can be found by solving a Riccati matrix difference equation and a matrix difference equation. The compensation term can be obtained by a recursion formula that solves adjoint vector equations.
得到的最优输出跟踪控制律由状态向量的线性解析函数和伴随向量级数形式的补偿项组成,其解析函数由一次性求解Riccati矩阵差分方程和矩阵差分方程得到,补偿项由求解伴随向量差分方程的递推公式得到。
- 更多网络解释 与adjoint difference equation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
adjoint difference equation:伴随差分方程
adjoint determinant 伴随行列式 | adjoint difference equation 伴随差分方程 | adjoint differential equation 伴随微分方程