adjoint difference equation
- adjoint difference equation的基本解释
-
-
伴随差分方程
- 更多网络例句与adjoint difference equation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The optimal control law obtained consists of linear analytic functions and a compensation term which is a series sum of the adjoint vectors. The analytic functions can be found by solving a Riccati matrix difference equation and a matrix difference equation. The compensation term can be obtained by a recursion formula that solves adjoint vector equations.
得到的最优输出跟踪控制律由状态向量的线性解析函数和伴随向量级数形式的补偿项组成,其解析函数由一次性求解Riccati矩阵差分方程和矩阵差分方程得到,补偿项由求解伴随向量差分方程的递推公式得到。
-
When the nonlinearity is an odd function, multiple positive solutions for the sec-ond order self-adjoint difference equation with the Neumann boundary conditionΔu(0)= 0,Δu = 0 are obtained by applying Clark's theorem.
另一方面,当非线性项非负且在0~+和+∞是渐近线性的情况下,应用山路引理研究了方程在混合边值条件u(0)= 0,Δu = 0下正解的存在性。
- 更多网络解释与adjoint difference equation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
adjoint difference equation:伴随差分方程
adjoint determinant 伴随行列式 | adjoint difference equation 伴随差分方程 | adjoint differential equation 伴随微分方程