absolute inequality
- absolute inequality的基本解释
-
-
非条件不等式
- 相似词
- 更多 网络例句 与absolute inequality相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Therefore,in order to simplify the proving process of these inequalities.Though reading a lot of relevant resource,we begin with the basic concept of math,and use an ingenious way――probabilistic method, which means that according to the main features of inequality theory,combining the basic concepts and formulas of probability,through creating one suitable probability model,giving some concrete meanings of random events or random variables,proving through probability theory,we discuss the Cauchy inequality,Class inequality,Jensen inequality,and several common inequality's proofs.
因此,为了简化这些不等式的证明过程,通过阅读大量的相关资料,本文从数学的基本概念入手,运用了1种巧妙的方法——概率方法,即根据不等式的主要特征,结合概率论的1些基本概念和公式,通过建立1个适当的概率模型,赋以1些随机事件或随机变量的具体含义,再利用概率论的理论加以证明,讨论了柯西不等式,级数不等式,詹森不等式和几个1般不等式的证明。
-
At the beginning of this thesis, the author gives the definition and the equivalent definition of convex function, and then proves the equivalent relationship between them. Secondly the author proposes the decision theorem of convex function which provides a judgment basis of whether a function is a convex function. Thirdly the author summarizes and proves the convex function's operational ,basic , differential and integral property. Finally the author proves several famous convex function inequalities, such as Jensen inequality, Holder inequality, Cauchy inequality and Minkowski inequality. The author also provides the application of these inequalities and illustrates the importance of convex function's basic inequality and integral property in the proving process.
本文开始给出了凸函数的定义及等价定义,并证明了它们之间的等价关系;接着提出了凸函数的判定定理,对一个函数是否是凸函数提供判断依据;然后对凸函数的运算性质、基本性质、微分性质、积分性质四个方面的性质进行了总结,并给予了证明;最后证明了凸函数的几个著名不等式詹森不等式、赫尔德不等式、柯西不等式和闵可夫斯基不等式以及这几个不等式的应用,并举例说明凸函数的基本性质和积分性质在不等式证明过程中的重要作用。
-
Inequality proof of various ways, they were: use derivative testify inequality nature, Includes using functional monotonicity and extreme value, the function and the concave and convex inequality, proving is concave and convex function in the original definition of equivalent definitions and a lemma is proposed on the basis of relevant concave and convex function of several theorems about inequality, and briefly discusses how to use the definitions and theorems in proof of inequality.
不等式的证明方法多种多样,它们分别是:用导数性质证明不等式;包括利用函数单调性,极值与最值,函数凹凸性证明不等式,其中在给出凹凸函数原始定义等价的解析定义和一个引理的基础上提出有关凹凸函数关于不等式的几个定理,并简要阐述了利用定义和定理在证明不等式中的运用。
- 更多网络解释 与absolute inequality相关的网络解释 [注:此内容来源于网络,仅供参考]
-
absolute inequality:绝不等式
absolute error 绝对误差 | absolute inequality 绝不等式 | absolute maximum 绝对极大值
-
absolute inequality:绝对不等式
absolute homotopy group 绝对同伦群 | absolute inequality 绝对不等式 | absolute instability 绝对不稳定性
-
absolute inequality:绝对不均等线
Absolute advantage 绝对利益 | Absolute inequality 绝对不均等线 | Acceleration principle 加速原因
-
absolute inequality:绝不等式Btu中国学习动力网
absolute error 绝对误差Btu中国学习动力网 | absolute inequality 绝不等式Btu中国学习动力网 | absolute maximum 绝对极大值Btu中国学习动力网
-
inequality with absolute value:含绝对值的不等式
奇数集 the set of all odd numbers | 含绝对值的不等式 inequality with absolute value | 一元二次不等式 one-variable quadratic inequality