Xn.
- Xn.的基本解释
-
abbr.
Christian, 基督
- 相关歌词
- Coming Soon
- 相关中文词汇
- 基督
- 更多网络例句与Xn.相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We could attempt to get around this difficulty by initially assigning the arbitrary value to another of the unknowns rather than to Xn.
开头对另一个而不是Xn的未知数指定为任意常数,能试图避免这个困难。
-
BY mathematics epagoge, the numbers of curves of n-degree space is rabbinical X(n+1),the numbers of poits of n-degree space is rabbinical Xn.
根据数学归纳法,N度空间的曲线数是X(n+1),N度空间的点数就是Xn。
-
The appearanee of halos and skins 15 usually identified by the abnormal inerease of total reaetion eross一seetions or by the narrow mo-- mentum distributions in the fragmentation of weakly bound nueleil一12}.xn order to manifcst the halo phe- nomenon elearly it 15 hope
结果表明,在所测量的角度范围内(6°-20°),17O的这一依赖关系可以用一条直线很好地拟合,而17F的这一依赖关系需要两条不同斜率的直线才能拟合。17F数据拟合中的这种斜率改变可能起因于17F的奇异结构。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
XN 845. Learn to say the fight thing at the fight time.
学会在适当的时候说适当的话
- 加载更多网络例句 (22)
- 更多网络解释与Xn.相关的网络解释 [注:此内容来源于网络,仅供参考]
-
XN :: eXclude Newer files. / xn:排除較新的文件
/XC :: eXclude Changed files. /越野: :排除更改的文件. | /XN :: eXclude Newer files. / xn : :排除較新的文件. | /XO :: eXclude Older files. /二甲酚橙: :排除在較舊的檔案.