Riemann zeta function
- Riemann zeta function的基本解释
-
-
黎曼ξ函数
- 更多网络例句与Riemann zeta function相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The zeta function of Euler and Riemann, expressed as an infinite series and a curious product over all primes.
该zeta函数的欧拉和黎曼,表达了作为一个无穷级数和好奇的产品超过所有素数。
-
Now by using Dai's exact solution formula and studying the asymptotical behavior controlcondition and using the series expression of the famous Riemann Zeta-function in number theory,after introducing and proving a new representation theory of inverse Laplace transformation wedirectly obtained Chen's solution formulae and their unique existence condition without usingLaplace transformation and〓 inverse formula.
本文从带消发散参数的严格解出发,通过研究渐近行为控制条件,利用数论中著名的Riemann-Zeta函数的级数表示,引入并证明一个逆Laplace变换的新的表示定理,直接导出了陈等发展的级数解,并得到了级数解的存在、唯一性条件。
-
In 1997 we studied the tables of the Riemann zeta function [1] and reached preliminary results indicating that the RH is false.
因而得到黎曼假设有错误的初步结果。