Jordan algebra
- Jordan algebra的基本解释
-
-
乔丹代数, 约当代数
- 相似词
- 更多 网络例句 与Jordan algebra相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Based on the outcome of Xu Yang and Qin Keyun about lattice implication algebra and lattice-valued prepositional logic LP with truth-value in a lattice implication algebra, the author studied the properties of lattice implication algebra and the α-automated reasoning method based on α-resolution principle of LP. The specific contents are as follows: The Study of Lattice Implication Algebra On the basis of previous results of lattice implication algebra, this part consists of the following three points: 1. Some properties of lattice implication algebra L were discussed, and some important results were given if L was a complete lattice implication algebra. 2. The properties of left idempotent elements of lattice implication algebras were discussed, and the conclusion that lattice implication algebra L was equals of the directed sum of the range and dual kernel of a left map constructed by a left idempotent element was proved. 3. The properties of the filters of lattice implication algebra were discussed, the theorem was shown that they satisfy the hypothetical syllogism and substitute theorem of the propositional logic. 4. The concept of weak niters of lattice implication algebras and their properties and structures are discussed. It is proved that all weak filters of a lattice implication algebra form a topology and the the implication isomorphism betweem two lattice implication algebras is a topological mapping between their topological spaces. The Study of α-automated reasoning method based on the lattice-valued propositional logic LP In this part, the author given an a-automated reasoning method based on the lattice-valued propositional logic LP.
本文基于徐扬和秦克云的关于格蕴涵代数和以格蕴涵代数为真值域的格值命题逻辑系统LP的研究工作,对格蕴涵代数以及格值命题逻辑系统LP中基于α-归结原理的自动推理方法进行了系统深入的研究,主要有以下两方面的研究成果:一、关于格蕴涵代数的研究 1、对格蕴涵代数的格论性质进行了研究,得到了当L为完备格蕴涵代数时,关于∨,∧,→运算的一些结果; 2、对格蕴涵代数的左幂等元进行了研究,证明了格蕴涵代数L可以分解为任何一个左幂等元所对应的左映射的像集合与其对偶核的直和; 3、对格蕴涵代数的滤子的性质进行了研究,证明了滤子的结构相似于逻辑学中的Hypothetical syllogism规则和替换定理; 4、给出了格蕴涵代数中弱滤子的概念,对弱滤子的性质个结构进行了研究,证明了格蕴涵代数的全体弱滤子构成一个拓扑结构,格蕴涵代数之间的蕴涵同构是相应的拓扑空间之间的拓扑映射。
-
We can produce various recreational shoe, stogy, mainly: Nike, Adidas, Timberland, Gucci, Prada, Retro Jordan, Dmp Shoes, Custom Af1, Jordan Basketball Shoes, Michael Jordan Basketball Shoes, Air Jordan Retro Shoes, Man Air Jordan Shoes, Jordan Retro 11 Shoes, New Jordan Shoes, Juicy Couture Handbags, High Fashion Handbags, Designer Handbag Replicas, Crystal Studded Handbags, Clear Handbags, Authentic Gucci Handbags, Luie Vuitton and Puma Shoes.
我们能生产各种休闲鞋、stogy,主要内容有:耐克、爱迪达、投资之一,gucci、枣、复古约旦雨水鞋、风俗切片、约旦篮球鞋,米高佐敦的篮球鞋,鞋加装空气约旦,约旦男子空中鞋,约旦复古鞋11、约旦新鞋,多汁女装手袋、手提包高级时装设计师手袋复制品,水晶馆手袋,明确手提包真实gucci手袋、皮鞋luie杜比和美洲豹。
-
Chapter three: Define fuzzy congruence relation of MTL-algebra, prove that fuzzy fiter and fuzzy congruence relation is a bijective function in MTL-algebra, quotient algebra induced by congruence relation still forms a MTL-algebra; Introduce the relation between some kinds of fiters and fuzzy filters maitained above in IMTL-algebra,i.e. BR_0 algebra, which is a MTL-algebra satisfied inversely odering and involutive relation.
第三章:定义了MTL-代数中的Fuzzy同余关系,证明了MTL-代数中Fuzzy滤子与Fuzzy同余关系是——对应的,由同余关系所诱导的商代数依然构成一个MTL-代数;介绍了在满足逆序对合对应的MTL-代数-IMTL-代数,即BR_0-代数中上述几中特殊滤子,Fuzzy滤子之间的关系。
- 更多网络解释 与Jordan algebra相关的网络解释 [注:此内容来源于网络,仅供参考]
-
jordan algebra:约当代数
joint distribution 联合分布 | jordan algebra 约当代数 | jordan automorphism 约当自同构
-
jordan algebra:若尔当代数
若尔当测度|Jordan measure | 若尔当代数|Jordan algebra | 若尔当代数的表示|representations of Jordan algebra
-
exceptional jordan algebra:例外约当代数
exceptional curve 例外曲线 | exceptional jordan algebra 例外约当代数 | exceptional point 例外点
-
exceptional jordan algebra:例外若尔当代数
例外曲线|exceptional curve | 例外若尔当代数|exceptional Jordan algebra | 立方|cube
-
special jordan algebra:特殊约当代数
special homology manifold 特殊同滴 | special jordan algebra 特殊约当代数 | special linear group 特殊线性群
- 加载更多网络解释 (5)