Fermat number
- Fermat number的基本解释
-
-
费马数
- 更多网络例句与Fermat number相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Help the Distributed Search for Fermat Number Divisors project find unique Fermat Number factors.
协助Fermat因子网络搜寻计划寻找特别的费马数因子。
-
Every integer can be written uniquely as a product of prime factors, and that because the Fermat number are co-prime, each prime number can appear in at most one Fermat number.
每个整数都可以被独特得分解质因数,而且因为费马数是互质的,每一个质数最多只能在一个费马数中出现。
-
This deduction establishes the theory foundation for selection of unity roots when constructing discrete image data, and provides the corresponding theory for applying Fermat number transforms in image processing and other fields further.
为Fermat数变换在图像处理领域的应用提供了理论依据。
-
Number Theoretic Transform; Integer transform; Fermat number transforms; Discrete Image data
数论变换;整型变换; Fermat数变换;离散图象数据
-
In 2000, F. LUCA proved that Fermat number are anti-sociable numbers, and in 2005, M. H. LE proved all powers of 2 are anti-sociable numbers. We have used the method of M. H. LE to obtain some new results of the anti-sociable numbers. For every integer n containing prime divisors that are 1 mod 4, let p mod 4 be an arbitrary prime divisor of n. There is at least one anti-sociable number in n^2, p^2n^2, p^4n^2, and p^6n^2. Therefore we can prove that anti-sociable numbers have positive density in perfect square numbers. We also give a method to find the exact anti-sociable numbers.
LUCA证明了Fermat数都是孤立数;2005年,乐茂华教授证明了2的方幂都是孤立数,用乐茂华教授的方法给出孤立数的一些新的结果:对于任意含有4w+1型素因子的正整数n,设p为n的任意一个4w+1型素因子,则在n^2,p^2n^2,p^4n^2,p^6n^2里至少有一个是孤立数,因此可以证明孤立数在完全平方数里有正密度,另外也给出求解确定孤立数的方法。
- 加载更多网络例句 (2)
- 更多网络解释与Fermat number相关的网络解释 [注:此内容来源于网络,仅供参考]
-
fermat number:费马数
fermat last theorem 费马最后定理 | fermat number 费马数 | fermat spiral 费马螺线
-
Fermat prime number:费马质数
Fermat point 费马点 | Fermat prime number 费马质数 | Fermat principle 费马原理