积级数
- 与 积级数 相关的网络解释 [注:此内容来源于网络,仅供参考]
-
integrability
可积性
数学分析的核心问题主要有四个: 收敛性 (convergence), 连续性 (continuity), 可微性 (differentiablity) 和可积性 (integrability), 其中收敛性主要是针对序列 (sequenve) 和级数 (series) 而言的, 而后三种性质则主要是就函数 (function) 而言的.
-
matrix power series
矩阵幂级数
matrix operator 矩阵算子 | matrix power series 矩阵幂级数 | matrix product 矩阵积
-
matrix product
矩阵积
matrix power series 矩阵幂级数 | matrix product 矩阵积 | matrix representation 阵表示
-
product representation of equation
方程的积表示
product preserving functor 积保存函子 | product representation of equation 方程的积表示 | product series 积级数
-
product series
积级数
product representation of equation 方程的积表示 | product series 积级数 | product set 积集
-
Sum of products
积之和;Riemann的和
自同态的和 sum of endomorphism | 积之和;Riemann的和 sum of products | 级数的和;级数的值 sum of series
-
Sum of products
积之和
11735,"sum of endomorphisms","自同态的和" | 11736,"sum of products","积之和" | 11737,"sum of series","级数的和;级数的值"
-
sum of series
级数的和;级数的值
积之和;Riemann的和 sum of products | 级数的和;级数的值 sum of series | 平方和 sum of squares
-
sum of series
级数和
sum of products 积和=> 乘积之和 | sum of series 级数和 | sum of spiral vector 螺旋矢量和
-
summable function
可和函数;可积函数
发散级数的可和性理论 summability theory of divergent series | 可和函数;可积函数 summable function | 可和级数 summable series
- 推荐网络解释
-
Greco-Latin square:希腊拉丁方格
Granduation of curve 曲线递合 | Greco-Latin square 希腊拉丁方格 | Grand lot 大批
-
cunningham:帆前角下拉索
斜拉器:kicking strap | 帆前角下拉索:cunningham | 调整索:outhaul
-
overstuffed:塞得过满
软性玩具 soft toy | 塞得过满 overstuffed | 教边 fray