基本引理
- 与 基本引理 相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Burnside
伯恩赛德
介绍了组合数学的基本原理和思想方法,包括组合数学基础、母函数及其应用、递推关系、容斥原理、抽屉原理和瑞姆赛(Ramsey)理论、波利亚(Pólya)定理等. 1.9 斯特灵(Stirling)近似公式第五章 抽屉原理和瑞姆赛(Ramsey)理论6.3 伯恩赛德(Burnside)引理
-
Neyman's factorization theorem
分解定理
Neyman分解定理 Neyman's factorization theorem | Neyman最短不偏信赖区间 Neyman's shortest unbiased confidence intervals | Neyman-Pearson基本引理 Neyman-Pearson fundamental lemma
-
fundamental lemma of calculus of variation
变分法的基本引理
fundamental lemma 基本引理 | fundamental lemma of calculus of variation 变分法的基本引理 | fundamental matrix 基本矩阵
-
fundamental lemma
基本引理
fundamental law 基本律 | fundamental lemma 基本引理 | fundamental lemma of calculus of variation 变分法的基本引理
-
Neyman-Pearson fundamental lemma
基本引理
Neyman最短不偏信赖区间 Neyman's shortest unbiased confidence intervals | Neyman-Pearson基本引理 Neyman-Pearson fundamental lemma | Neyman-Pearson引理 Neyman-Pearson lemma
-
Neyman-Pearson fundamental lemma Neyman-Pearson
基本引理
平均新比旧差的 new-worse-than-used in expection (NWUE) | Neyman-Pearson fundamental lemma Neyman-Pearson基本引理 | Neyman-Pearson tests Neyman-Pearson检定
-
fundamental theorem of homomorphism of rings
环的同态基本定理
fundamental theorem of homomorphism of groups 群的同态基本定理 | fundamental theorem of homomorphism of rings 环的同态基本定理 | Gauss' lemma 高斯引理
-
lemma
引理
)利用杜尔的结果发现了现在称为西根引理的东西,这引理(Lemma)是在研究超越数时是最基本必用的工具. 波萨在证明过程中用到在数学上称为鸽笼原理(PigeonholePrinciple)的东西. 这原理是这样说的:如果把n+1个东西放进n个盒子里,
- 推荐网络解释
-
enamelling iron:搪瓷[用)钢板
enamelled strip || 涂珐琅钢带,搪瓷钢带 | enamelling iron || 搪瓷[用)钢板 | enantiomer || 对映体,对映异构物
-
leeringly:以斜眼看 (副)
leeriness 猜疑; 留神; 狡猾; 机警 (名) | leeringly 以斜眼看 (副) | leery 机敏的, 细心的; 猜疑的, 迟疑的 (形)
-
FIGURATIVE MARK:形商标
形商标 FIGURATIVE MARK | 组合商标 ASSOCIATED MARK | 保证商标 CERTIFICATION MARK