代数簇
- 与 代数簇 相关的网络解释 [注:此内容来源于网络,仅供参考]
-
dimension of an affine variety
仿射簇的维数
仿射超平面|affine hyperplane | 仿射簇的维数|dimension of an affine variety | 仿射代数群|affine algebraic group
-
albanese variety
阿尔巴内塞簇
阿贝尔李代数|Abelian Lie algebra | 阿尔巴内塞簇|Albanese variety | 阿基米德公理|Archimedean axiom
-
irreducible algebraic correspondence
不可约代数对应
irreducible 不可约的 | irreducible algebraic correspondence 不可约代数对应 | irreducible algebraic variety 不可约代数簇
-
projective algebraic curve
射影代数曲线
projective abundance 投影多度 | projective algebraic curve 射影代数曲线 | projective algebraic variety 射影代数簇
-
the piecewise algebraic curve
分片代数曲线
线性代数方程组:linear algebraic equations | 分片代数曲线:the piecewise algebraic curve | 实分片代数簇:the piecewise algebraic variety
-
rational algebraic fraction
有理代数分数
rational activity coefficient 有理活度系数 | rational algebraic fraction 有理代数分数 | rational algebraic variety 有理代数簇
-
arithmetic of associative algebra
结合代数的算术
结合代数簇|variety of associative algebras | 结合代数的算术|arithmetic of associative algebra | 结合环|associative ring
-
localization
局部化
[摘要]局部化(Localization)方法是交换代数中一个重要工具,通过研究一个代数簇(Algebraic Variety)在某点或某点附近的局部性质,往往可以把握代数簇的整体特性.
-
dimension of a projective variety
射影簇的维数
射影超平面|projective hyperplane | 射影簇的维数|dimension of a projective variety | 射影代数集|projective algebraic set
-
unirational variety
单有理簇
uniqueness theorem 唯一性定理 | unirational variety 单有理簇 | uniserial algebra 单列代数
- 推荐网络解释
-
Anopheles candidiensis:日月潭疟蚊
\\"疟蚊属\\",\\"Anopheles\\" | \\"日月潭疟蚊\\",\\"Anopheles candidiensis\\" | \\"中华疟蚊\\",\\"Anopheles hyrcanus var. sinensis\\"
-
Gnome Milnes:GNOME:下的扫雷
2. Games:游戏软件 | 1) Gnome Milnes:GNOME下的扫雷; | 2) Gnibbles:贪吃蛇游戏;
-
Malmaison Edinburgh:爱丁堡
" The Macdonald Roxburghe Hotel"麦当劳roxburghe酒店 | " Malmaison Edinburgh"爱丁堡malmaison | " The Scotsman Hotel"苏格兰人酒店