代数几何的
- 与 代数几何的 相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Linear Algebra
线性代数
>(Linear Algebra)是教育部工科数学教学指导委员会列出的重点基础理论课之一,线性代数起源于欧氏几何、线性方程组理论、解析几何. 例如,线性方程组的系数和常数项按其顺序排列就得到矩阵,齐次线性方程组的解在加法和数乘下是封闭的,
-
Analytic Geometry
解析几何
数量和空间在解析几何(analytic geometry)、微分几何(differential geometry)和代数几何(algebraic geometry)中非常重要. 理解和描述(understanding and describing)变化是自然科学的主题. 微积分是这方面的一个重要工具.
-
commutative ring
交换环
特别是代数几何与代数数论(交换环)、泛函分析(交换赋范环、算子环与函数环)飞拓扑(拓扑空间上的连续函数环).域论、交换环理沦(见域(阮ld),交换环(commutative ring),亦见交换代数(commutative al罗bra)),
-
lofting
放样
机、船舶的外形放样(Lofting)工艺,主要研究在计算机图像系统的环境下对曲面信息的表示、逼近、分析和综合.它已与微分几何、代数几何、函数逼近论、拓扑学、抽象代数、矩阵论、微分方程、最优化、数值分析等数学分支以及计算机辅助设计/加工、数据结构、数控、程序设计、计算机动画等有着紧密联系,
-
modular form
模形式
例如,Grothendieck对代数几何有一个这样的纲领;而Langlands则有一个与模形式(modular form)和数论有关的表示论的纲领. 我从没有这样的纲领,就是小范围的也没有. 我只是做我立时感兴趣的事情. (眼下我最感兴趣的课题是计算有限域上的代数曲线中点的个数.
-
number system
数系
代数方面强调数系(number system)概念,用较严密的逻辑方法以证明数学上的定理. 前人依赖欧几里德几何来训练逻辑思维,在新数学课程里,主要是削减欧氏几何的非基本命题或非基本而繁复的命题而致力于更有趣的项目. 课程中加入集合论的概念逻辑,
-
pure projective geometry
综合射影几何
综合射影几何 pure projective geometry | 纯二次的 pure quadratic | 纯表现代数 pure representation algebra
-
renormalization group
重正化群
在统计物理和高能物理中,用到所谓重正化群(renormalization group)的方法,是非稳定系统的一个重要工具. 在微分方程或微分几何遇到奇异点或在研究渐近分析时,炸开(blowing up)分析是一个很重要的工具,而这种炸开的工具亦是代数几何中最有效的工具.
-
Torus
环面
数学中有所谓的对偶(duality)的现象,比如有如下关系:这个环面(torus)的对偶正是弦理论对偶的基础,现代数论的一个最重要的环节叫朗兰兹理论,也有对偶的问题,与代数几何和表示理论有密切的关系.
-
Riemannian geometry
黎曼几何
实分析( Real Analysis)中的测度(Measure)是几何学中长度、面积、体积概念的推广;泛函分析中的谱(Spectrum)是线性代数(Linear Algebra)中特征向量(Eigenvector)概念的推广;黎曼几何(Riemannian Geometry)中的度规 (Metric)是平面解析几何中两点距离公式的推广,
- 推荐网络解释
-
tram stop:(有轨)电车车站
post 邮局 | tram-stop(有轨)电车车站 | zebra-crossing 斑马线
-
Jaish-e-Mohammad,JEM:穆罕默德军
16. 乌兹别克斯坦伊斯兰运动Islamic Movement of Uzbekistan,IMU | 17. 穆罕默德军Jaish-e-Mohammad,JEM | 18. 伊斯兰祈祷团Jemaah Islamiya Organization,JI
-
TINTING:糊版 底污;上色 著淡色;染色
Tight edge 纸边起翘 紧边 弓形纸边 | Tinting 糊版 底污;上色 著淡色;染色 | Transfer printing 贴花印刷 转写印刷 转移印刷